Advertisement

Early Prediction of Ecotoxicological Side Effects of Pharmaceutical Impurities Based on Open-Source Non-testing Approaches

  • Anna Rita Tondo
  • Michele Montaruli
  • Giuseppe Felice Mangiatordi
  • Orazio NicolottiEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Despite the increasing efforts to limit waste and avoid environmental contaminants, a large number of compounds using in the pharmaceutical field may have an ecotoxicological impact. Nevertheless, a complete overview of all possible ecotoxicological effects of pharmaceuticals is missing: that is especially true for chemical impurities. The lacking information regarding environmental behavior of impurities could be faced by computational techniques: the ability to predict the unknown toxicity of a compound can reduce uncertainties regarding possible negative effects on the environment of pharmaceutical impurities. In the current scenario, non-testing methods may answer to the requirement of assessing the ecotoxicological impact of chemicals in a more affordable way. For this purpose, in the first part of the review, definition and classification of chemical impurities are proposed, while in the second part, a description of four open-source computational tools (T.E.S.T., VEGA, LAZAR, and QSAR Toolbox) is provided after a brief survey of the computational methods. The paper also shows the advantages of combining individual test methods in order to increase confidence in the predictive results.

Key words

Impurities QSAR Toolbox Ecotoxicity LAZAR VEGA T.E.S.T. Non-testing approaches QSAR models 

Notes

Dedication

To the memory of Michele Montaruli, exceptionally gifted PhD student who has always devoted his life to serving others. To you, Michele, our huge embrace.

References

  1. 1.
    Sheldon RA (Delft U of T (Netherlands)) (1994) Consider the environmental quotient. CHEMTECH U S 24:3Google Scholar
  2. 2.
    Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278.  https://doi.org/10.1039/B418069KCrossRefGoogle Scholar
  3. 3.
    Halling-Sørensen B, Nors Nielsen S, Lanzky PF et al (1998) Occurrence, fate and effects of pharmaceutical substances in the environment- a review. Chemosphere 36:357–393.  https://doi.org/10.1016/S0045-6535(97)00354-8CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dietrich DR, Webb SF, Petry T (2002) Hot spot pollutants: pharmaceuticals in the environment. Toxicol Lett 131:1–3.  https://doi.org/10.1016/S0378-4274(02)00062-0CrossRefPubMedGoogle Scholar
  5. 5.
    Kot-Wasik A, Jakimska A, Śliwka-Kaszyńska M (2016) Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ Monit Assess 188.  https://doi.org/10.1007/s10661-016-5637-0
  6. 6.
    Ying G-G, Zhao J-L, Zhou L-J, Liu S (2013) Fate and occurrence of pharmaceuticals in the aquatic environment (surface water and sediment). In: Comprehensive Analytical Chemistry. Elsevier, pp 453–557Google Scholar
  7. 7.
    Ferrari B, Paxéus N, Giudice RL et al (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370.  https://doi.org/10.1016/S0147-6513(02)00082-9CrossRefPubMedGoogle Scholar
  8. 8.
    Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. Rev J Pharm Biomed Anal 106:25–36.  https://doi.org/10.1016/j.jpba.2014.11.040CrossRefGoogle Scholar
  9. 9.
    aus der Beek T, Weber F-A, Bergmann A et al (2016) Pharmaceuticals in the environment-global occurrences and perspectives: pharmaceuticals in the global environment. Environ Toxicol Chem 35:823–835.  https://doi.org/10.1002/etc.3339CrossRefGoogle Scholar
  10. 10.
    Henschel K-P, Wenzel A, Diedrich M, Fliedner A (1997) Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharmacol 25:220–225.  https://doi.org/10.1006/rtph.1997.1102CrossRefPubMedGoogle Scholar
  11. 11.
    Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194.  https://doi.org/10.1016/S0378-4274(03)00068-7CrossRefPubMedGoogle Scholar
  12. 12.
    Chatzitakis A, Berberidou C, Paspaltsis I et al (2008) Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res 42:386–394.  https://doi.org/10.1016/j.watres.2007.07.030CrossRefPubMedGoogle Scholar
  13. 13.
    Méndez-Arriaga F, Esplugas S, Giménez J (2008) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594.  https://doi.org/10.1016/j.watres.2007.08.002CrossRefPubMedGoogle Scholar
  14. 14.
    Hughes Mike, Health JBS of P. The principles of humane experimental technique: preface. In: Johns Hopkins Bloom. Sch. Public Health. http://altweb.jhsph.edu/pubs/books/humane_exp/addendum. Accessed 28 May 2019
  15. 15.
    Abraham J (2009) International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. In: Brouder A, Tietje C (eds) Handbook of transnational economic governance regimes. Brill, pp 1041–1054Google Scholar
  16. 16.
    Prat D, Pardigon O, Flemming H-W et al (2013) Sanofi’s solvent selection guide: a step toward more sustainable processes. Org Process Res Dev 17:1517–1525.  https://doi.org/10.1021/op4002565CrossRefGoogle Scholar
  17. 17.
    Fontaine N, Reynders D (2001) Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the community code relating to medicinal products for human use. Off J Eur Commun L 311:67–128Google Scholar
  18. 18.
    Convention USP (2009) USP NF 2009. United States Pharmacopeial Convention. https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/usp-nf-notices/usp38_nf33_gn.pdf
  19. 19.
    Alsante KM, et al (2001) Isolation and identification of process related impurities and degradation products from pharmaceutical drug candidates, Part I. Am Pharm Rev 4:70–78Google Scholar
  20. 20.
    Mangiatordi GF, Alberga D, Altomare CD et al (2016) Mind the gap! A journey towards computational toxicology. Mol Inform 35:294–308.  https://doi.org/10.1002/minf.201501017CrossRefPubMedGoogle Scholar
  21. 21.
    Nicolotti O, Benfenati E, Carotti A et al (2014) REACH and in silico methods: an attractive opportunity for medicinal chemists. Drug Discov Today 19:1757–1768.  https://doi.org/10.1016/j.drudis.2014.06.027CrossRefPubMedGoogle Scholar
  22. 22.
    Gissi A, Mangiatordi GF, Sobański T et al (2017) Nontest methods for REACH legislation. In: Comprehensive medicinal chemistry III. Elsevier, pp 472–490Google Scholar
  23. 23.
    Todeschini R, Consonni V (2008) Handbook of molecular descriptors. John Wiley & Sons, Weinheim/New YorkGoogle Scholar
  24. 24.
    McKinney JD, Richard A, Waller C et al (2000) The practice of structure activity relationships (SAR) in toxicology. Toxicol Sci 56:8–17.  https://doi.org/10.1093/toxsci/56.1.8CrossRefPubMedGoogle Scholar
  25. 25.
    Cronin Mark TD, Jaworska Joanna S, Walker John D et al (2003) Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environ Health Perspect 111:1391–1401.  https://doi.org/10.1289/ehp.5760CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cronin Mark TD, Walker John D, Jaworska Joanna S et al (2003) Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111:1376–1390.  https://doi.org/10.1289/ehp.5759CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gissi A, Nicolotti O, Carotti A et al (2013) Integration of QSAR models for bioconcentration suitable for REACH. Sci Total Environ 456–457:325–332.  https://doi.org/10.1016/j.scitotenv.2013.03.104CrossRefPubMedGoogle Scholar
  28. 28.
    Gissi A, Lombardo A, Roncaglioni A et al (2015) Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: the bioconcentration factor (BCF). Environ Res 137:398–409.  https://doi.org/10.1016/j.envres.2014.12.019CrossRefPubMedGoogle Scholar
  29. 29.
    Gissi A, Gadaleta D, Floris M et al (2014) An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. ALTEX - Altern Anim Exp 31:23–36.  https://doi.org/10.14573/altex.1305221CrossRefGoogle Scholar
  30. 30.
    Dearden JC, Barratt MD, Benigni R, et al (1997) The development and validation of expert systems for predicting toxicity: the report and recommendations of an ECVAM/ECB workshop (ECVAM Workshop 24)Google Scholar
  31. 31.
    Ashby J, Tennant RW (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat Res Toxicol 204:17–115.  https://doi.org/10.1016/0165-1218(88)90114-0CrossRefGoogle Scholar
  32. 32.
    Mentzas G (1994) A functional taxonomy of computer-based information systems. Int J Inf Manag 14:397–410.  https://doi.org/10.1016/0268-4012(94)90015-9CrossRefGoogle Scholar
  33. 33.
    Benfenati E (2016) In Silico methods for predicting drug toxicity. Springer New York, New YorkCrossRefGoogle Scholar
  34. 34.
    Pizzo F, Gadaleta D, Lombardo A et al (2015) Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data. Chem Cent J 9:62.  https://doi.org/10.1186/s13065-015-0139-7CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dobo KL, Greene N, Cyr MO et al (2006) The application of structure-based assessment to support safety and chemistry diligence to manage genotoxic impurities in active pharmaceutical ingredients during drug development. Regul Toxicol Pharmacol 44:282–293.  https://doi.org/10.1016/j.yrtph.2006.01.004CrossRefPubMedGoogle Scholar
  36. 36.
    Floris M, Manganaro A, Nicolotti O et al (2014) A generalizable definition of chemical similarity for read-across. J ChemInform 6:39.  https://doi.org/10.1186/s13321-014-0039-1CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Willett P, Barnard JM, Downs GM (1998) Chemical Similarity Searching. J Chem Inf Comput Sci 38:983–996.  https://doi.org/10.1021/ci9800211CrossRefGoogle Scholar
  38. 38.
    Blackburn K, Stuard SB (2014) A framework to facilitate consistent characterization of read across uncertainty. Regul Toxicol Pharmacol 68:353–362.  https://doi.org/10.1016/j.yrtph.2014.01.004CrossRefPubMedGoogle Scholar
  39. 39.
    Patlewicz G, Ball N, Booth ED et al (2013) Use of category approaches, read-across and (Q)SAR: general considerations. Regul Toxicol Pharmacol 67:1–12.  https://doi.org/10.1016/j.yrtph.2013.06.002CrossRefPubMedGoogle Scholar
  40. 40.
    Wu S, Blackburn K, Amburgey J et al (2010) A framework for using structural, reactivity, metabolic and physicochemical similarity to evaluate the suitability of analogs for SAR-based toxicological assessments. Regul Toxicol Pharmacol 56:67–81.  https://doi.org/10.1016/j.yrtph.2009.09.006CrossRefPubMedGoogle Scholar
  41. 41.
    OECD (2017) Guidance on grouping of chemicals, Second edition. OECD, ParisCrossRefGoogle Scholar
  42. 42.
    European Chemicals Agency (2017) Guidance on information requirements and chemical safety assessment chapter R.7b: endpoint specific guidanceGoogle Scholar
  43. 43.
    Baldi P, Brunak S, Bach F (2001) Bioinformatics: the machine learning approach. MIT pressGoogle Scholar
  44. 44.
    Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318–331.  https://doi.org/10.1016/j.drudis.2014.10.012CrossRefPubMedGoogle Scholar
  45. 45.
    Marchant CA (2012) Computational toxicology: a tool for all industries: computational toxicology. Wiley Interdiscip Rev Comput Mol Sci 2:424–434.  https://doi.org/10.1002/wcms.100CrossRefGoogle Scholar
  46. 46.
    Michie D (1968) “Memo” functions and machine learning. Nature 218.5136:19CrossRefGoogle Scholar
  47. 47.
    Trisciuzzi D, Alberga D, Mansouri K et al (2015) Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med Chem 7:1921–1936.  https://doi.org/10.4155/fmc.15.103CrossRefPubMedGoogle Scholar
  48. 48.
    Trisciuzzi D, Alberga D, Mansouri K et al (2017) Predictive structure-based toxicology approaches to assess the androgenic potential of chemicals. J Chem Inf Model 57:2874–2884.  https://doi.org/10.1021/acs.jcim.7b00420CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kamel M, Ahmed A, Aleksandra R et al (2016) CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect 124:1023–1033.  https://doi.org/10.1289/ehp.1510267CrossRefGoogle Scholar
  50. 50.
    Trisciuzzi D, Alberga D, Leonetti F et al (2018) Molecular docking for predictive toxicology. In: Nicolotti O (ed) Computational toxicology. Springer New York, New York, pp 181–197CrossRefGoogle Scholar
  51. 51.
    Martin TM, Harten P, Venkatapathy R et al (2008) A hierarchical clustering methodology for the estimation of toxicity. Toxicol Mech Methods 18:251–266.  https://doi.org/10.1080/15376510701857353CrossRefPubMedGoogle Scholar
  52. 52.
    US EPA O (2015) Ecotoxicology database. In: US EPA. https://www.epa.gov/chemical-research/ecotoxicology-database. Accessed 29 May 2019
  53. 53.
    Dimitrov S, Dimitrova N, Parkerton T et al (2005) Base-line model for identifying the bioaccumulation potential of chemicals. SAR QSAR Environ Res 16:531–554.  https://doi.org/10.1080/10659360500474623CrossRefPubMedGoogle Scholar
  54. 54.
    A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms - Environmental Reviews. https://www.nrcresearchpress.com/doi/abs/10.1139/a06-005#.XO5Rq4gzbIU. Accessed 29 May 2019
  55. 55.
    Zhao C, Boriani E, Chana A et al (2008) A new hybrid system of QSAR models for predicting bioconcentration factors (BCF). Chemosphere 73:1701–1707.  https://doi.org/10.1016/j.chemosphere.2008.09.033CrossRefPubMedGoogle Scholar
  56. 56.
    Benfenati E (2010) The CAESAR project for in silico models for the REACH legislation. Chem Cent J 4:I1.  https://doi.org/10.1186/1752-153X-4-S1-I1CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Commission E (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J 3961 30122006Google Scholar
  58. 58.
    Williams ES, Panko J, Paustenbach DJ (2009) The European Union’s REACH regulation: a review of its history and requirements. Crit Rev Toxicol 39:553–575.  https://doi.org/10.1080/10408440903036056CrossRefPubMedGoogle Scholar
  59. 59.
    Golbamaki A, Cassano A, Lombardo A et al (2014) Comparison of in silico models for prediction of Daphnia magna acute toxicity. SAR QSAR Environ Res 25:673–694.  https://doi.org/10.1080/1062936X.2014.923041CrossRefPubMedGoogle Scholar
  60. 60.
    Yordanova D, Schultz TW, Kuseva C et al (2019) Automated and standardized workflows in the OECD QSAR toolbox. Comput Toxicol 10:89–104.  https://doi.org/10.1016/j.comtox.2019.01.006CrossRefGoogle Scholar
  61. 61.
    Enoch S j. (2010) Chemical category formation and read-across for the prediction of toxicity. In: Puzyn T, Leszczynski J, Cronin MT (eds) Recent advances in QSAR studies. Springer Netherlands, Dordrecht, pp 209–219CrossRefGoogle Scholar
  62. 62.
    Devillers J (2013) Methods for building QSARs. In: Reisfeld B, Mayeno AN (eds) Computational toxicology: Volume II. Humana Press, Totowa, pp 3–27CrossRefGoogle Scholar
  63. 63.
    Klimisch H-J, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5.  https://doi.org/10.1006/rtph.1996.1076CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gadaleta D, Mangiatordi GF, Catto M et al (2016) Applicability domain for QSAR models: where theory meets reality. Int J Quant Struct-Prop Relatsh IJQSPR 1:45–63.  https://doi.org/10.4018/IJQSPR.2016010102CrossRefGoogle Scholar
  65. 65.
    Walker J, Carlsen L, Jaworska J (2003) Improving opportunities for regulatory acceptance of QSARs: the importance of model domain, uncertainty, validity and predictability. QSAR Comb Sci 22:346–350.  https://doi.org/10.1002/qsar.200390024CrossRefGoogle Scholar
  66. 66.
    Russom CL, Breton RL, Walker JD, Bradbury SP (2003) An overview of the use of quantitative structure–activity relationships for ranking and prioritizing large chemical inventories for environmental risk assessments. Environ Toxicol Chem 22:1810.  https://doi.org/10.1897/01-194CrossRefPubMedGoogle Scholar
  67. 67.
    Eriksson L, Jaworska J, Worth AP et al (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375.  https://doi.org/10.1289/ehp.5758CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Roncaglioni A, Toropov AA, Toropova AP, Benfenati E (2013) In silico methods to predict drug toxicity. Curr Opin Pharmacol 13:802–806.  https://doi.org/10.1016/j.coph.2013.06.001CrossRefPubMedGoogle Scholar
  69. 69.
    Helma C (2005) Predictive toxicology. CRC Press, Boca Raton, Florida, USAGoogle Scholar
  70. 70.
    Judson R (2010) Public databases supporting computational toxicology. J Toxicol Environ Health Part B 13:218–231.  https://doi.org/10.1080/10937404.2010.483937CrossRefGoogle Scholar
  71. 71.
    Atkins D (2003) Revolutionizing science and engineering through cyberinfrastructure: report of the National Science Foundation Blue-Ribbon Advisory Panel on CyberinfrastructureGoogle Scholar
  72. 72.
    Judson PN, Cooke PA, Doerrer NG et al (2005) Towards the creation of an international toxicology information Centre. Toxicology 213:117–128.  https://doi.org/10.1016/j.tox.2005.05.014CrossRefPubMedGoogle Scholar
  73. 73.
    Heidorn CJA, Rasmussen K, Hansen BG et al (2003) IUCLID: an information management tool for existing chemicals and biocides. J Chem Inf Comput Sci 43:779–786.  https://doi.org/10.1021/ci0202786CrossRefPubMedGoogle Scholar
  74. 74.
    Louis KS, Jones LM, Campbell EG (2002) Macroscope: sharing in science. Am Sci 90:304–307CrossRefGoogle Scholar
  75. 75.
    Hilgartner S, Brandt-Rauf SI (1994) Data access, ownership, and control: toward empirical studies of access practices. Knowledge 15:355–372.  https://doi.org/10.1177/107554709401500401CrossRefGoogle Scholar
  76. 76.
    Staples CA, Woodburn K, Caspers N et al (2002) A weight of evidence approach to the aquatic hazard assessment of bisphenoi A. Hum Ecol Risk Assess Int J 8:1083–1105.  https://doi.org/10.1080/1080-700291905837CrossRefGoogle Scholar
  77. 77.
    Benedetti M, Ciaprini F, Piva F et al (2012) A multidisciplinary weight of evidence approach for classifying polluted sediments: integrating sediment chemistry, bioavailability, biomarkers responses and bioassays. Environ Int 38:17–28.  https://doi.org/10.1016/j.envint.2011.08.003CrossRefPubMedGoogle Scholar
  78. 78.
    Piva F, Ciaprini F, Onorati F et al (2011) Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere 83:475–485.  https://doi.org/10.1016/j.chemosphere.2010.12.064CrossRefPubMedGoogle Scholar
  79. 79.
    Hartung T (2009) Food for thought … on in silico methods in toxicology. ALTEX 26:155–166.  https://doi.org/10.14573/altex.2009.3.155CrossRefPubMedGoogle Scholar
  80. 80.
    Bunn DW (1988) Combining forecasts. Eur J Oper Res 33:223–229.  https://doi.org/10.1016/0377-2217(88)90165-8CrossRefGoogle Scholar
  81. 81.
    Clemen RT (1989) Combining forecasts: a review and annotated bibliography. Int J Forecast 5:559–583.  https://doi.org/10.1016/0169-2070(89)90012-5CrossRefGoogle Scholar
  82. 82.
    The Combination of Forecasts: Journal of the Operational Research Society: Vol 20, No 4. https://www.tandfonline.com/doi/abs/10.1057/jors.1969.103. Accessed 29 May 2019
  83. 83.
    Hewitt M, Cronin MTD, Madden JC et al (2007) Consensus QSAR models: do the benefits outweigh the complexity? J Chem Inf Model 47:1460–1468.  https://doi.org/10.1021/ci700016dCrossRefPubMedGoogle Scholar
  84. 84.
    Votano JR, Parham M, Hall LH et al (2004) Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 19:365–377.  https://doi.org/10.1093/mutage/geh043CrossRefPubMedGoogle Scholar
  85. 85.
    Lewis DF, Bird MG, Jacobs MN (2002) Human carcinogens: an evaluation study via the COMPACT and HazardExpert procedures. Hum Exp Toxicol 21:115–122.  https://doi.org/10.1191/0960327102ht233oaCrossRefGoogle Scholar
  86. 86.
    Research C for DE and (2019) M7(R1) assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. In: US Food Drug Adm. http://www.fda.gov/regulatory-information/search-fda-guidance-documents/m7r1-assessment-and-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential. Accessed 29 May 2019
  87. 87.
    Müller L, Mauthe RJ, Riley CM et al (2006) A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul Toxicol Pharmacol 44:198–211.  https://doi.org/10.1016/j.yrtph.2005.12.001CrossRefPubMedGoogle Scholar
  88. 88.
    Sutter A, Amberg A, Boyer S et al (2013) Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharmacol 67:39–52.  https://doi.org/10.1016/j.yrtph.2013.05.001CrossRefPubMedGoogle Scholar
  89. 89.
    Mattingly Carolyn J, Colby Glenn T, Forrest John N, Boyer James L (2003) The comparative toxicogenomics database (CTD). Environ Health Perspect 111:793–795.  https://doi.org/10.1289/ehp.6028CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124.  https://doi.org/10.1021/ed100697wCrossRefGoogle Scholar
  91. 91.
    Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107.  https://doi.org/10.1093/nar/gkr777CrossRefPubMedGoogle Scholar
  92. 92.
    Richard AM, Williams CR (2002) Distributed structure-searchable toxicity (DSSTox) public database network: a proposal. Mutat Res Mol Mech Mutagen 499:27–52.  https://doi.org/10.1016/S0027-5107(01)00289-5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Anna Rita Tondo
    • 1
  • Michele Montaruli
    • 2
  • Giuseppe Felice Mangiatordi
    • 3
  • Orazio Nicolotti
    • 2
    Email author
  1. 1.Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
  2. 2.Dipartimento di Farmacia-Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”BariItaly
  3. 3.Istituto di Cristallografia, Consiglio Nazionale delle RicercheBariItaly

Personalised recommendations