Jasmonate in Plant Biology pp 117-130 | Cite as
Establishment of Actinorhizal Symbiosis in Response to Ethylene, Salicylic Acid, and Jasmonate
Abstract
Phytohormones play a crucial role in regulating plant developmental processes. Among them, ethylene and jasmonate are known to be involved in plant defense responses to a wide range of biotic stresses as their levels increase with pathogen infection. In addition, these two phytohormones have been shown to inhibit plant nodulation in legumes. Here, exogenous salicylic acid (SA), jasmonate acid (JA), and ethephon (ET) were applied to the root system of Casuarina glauca plants before Frankia inoculation, in order to analyze their effects on the establishment of actinorhizal symbiosis. This protocol further describes how to identify putative ortholog genes involved in ethylene and jasmonate biosynthesis and/or signaling pathways in plant, using the Arabidopsis Information Resource (TAIR), Legume Information System (LIS), and Genevestigator databases. The expression of these genes in response to the bacterium Frankia was analyzed using the gene atlas for Casuarina–Frankia symbiosis (SESAM web site).
Key words
Ethylene Jasmonate Actinorhizal symbiosis Frankia Casuarina glaucaNotes
Acknowledgments
This work was supported, in part, by the Institut de Recherche pour le Développement (IRD) and the Agence Universitaire de la Francophonie (AUF) through the interregional doctoral college in food and plant biotechnology (CD-BIOVEGAGRO) and grants from the USDA National Institute of Food and Agriculture (Hatch 022821) and USDA AFRI (A1151 2014-03765). M. Ngom was supported by the Ministère de l’Enseignement Supérieur et de la Recherche du Sénégal, national grant (MERS), the Word Federation of Scientists, research allowance (WFS), and the ARTS, PhD grant (IRD).
References
- 1.Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, New York, pp 1–15CrossRefGoogle Scholar
- 2.Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488CrossRefGoogle Scholar
- 3.Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295CrossRefGoogle Scholar
- 4.Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86CrossRefGoogle Scholar
- 5.Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458CrossRefGoogle Scholar
- 6.Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43:439–463CrossRefGoogle Scholar
- 7.Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058CrossRefGoogle Scholar
- 8.Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 395–412CrossRefGoogle Scholar
- 9.Yan Y, Borrego E, Kolomiets MV (2013) Jasmonate biosynthesis, perception and function in plant development and stress responses. In: Lipid metabolism. IntechOpen, LondonGoogle Scholar
- 10.Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A 89:2389–2393CrossRefGoogle Scholar
- 11.Kapoor R (2008) Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. Online J Biol Sci 8:49–56CrossRefGoogle Scholar
- 12.Vijayan P, Shockey J, Lévesque CA, Cook RJ (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci U S A 95:7209–7214CrossRefGoogle Scholar
- 13.Feng Y-J, Wang J-W, Luo S-M (2007) Effects of exogenous jasmonic acid on concentrations of direct-defense chemicals and expression of related genes in bt (Bacillus thuringiensis) corn (Zea mays). Agric Sci China 6:1456–1462CrossRefGoogle Scholar
- 14.Chen H-Y, Hsieh E-J, Cheng M-C, Chen C-Y, Hwang S-Y, Lin T-P (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol 211:599–613CrossRefGoogle Scholar
- 15.Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100CrossRefGoogle Scholar
- 16.Schaller F, Biesgen C, Müssig C, Altmann T, Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984CrossRefGoogle Scholar
- 17.Cacas JL, Pré M, Pizot M, Cissoko M, Diedhiou I, Jalloul A, Doumas P, Nicole M, Champion A (2017) GhERF-IIb3 regulates the accumulation of jasmonate and leads to enhanced cotton resistance to blight disease. Molecular Plant Pathology 18:825–836CrossRefGoogle Scholar
- 18.Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151CrossRefGoogle Scholar
- 19.Van Loon LC, Geraats BP, Linthorst HJ (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191CrossRefGoogle Scholar
- 20.Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950CrossRefGoogle Scholar
- 21.Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479CrossRefGoogle Scholar
- 22.Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849CrossRefGoogle Scholar
- 23.Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970CrossRefGoogle Scholar
- 24.Reid D, Liu H, Kelly S, Kawaharada Y, Mun T, Andersen SU, Desbrosses G, Stougaard J (2018) Dynamics of ethylene production in response to compatible Nod factor. Plant Physiol 176:1764–1772CrossRefGoogle Scholar
- 25.Van Spronsen PC, Tak T, Rood AM, van Brussel AA, Kijne JW, Boot KJ (2003) Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Mol Plant-Microbe Interact 16:83–91CrossRefGoogle Scholar
- 26.Tromas A, Parizot B, Diagne N, Champion A, Hocher V, Cissoko M, Crabos A, Prodjinoto H, Lahouze B, Bogusz D et al (2012) Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 7:e44742CrossRefGoogle Scholar
- 27.Diédhiou I, Tromas A, Cissoko M, Gray K, Parizot B, Crabos A, Alloisio N, Fournier P, Carro L, Svistoonoff S (2014) Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa. BMC Plant Biol 14:342CrossRefGoogle Scholar
- 28.Zhong C, Mansour S, Nambiar-Veetil M, Bogusz D, Franche C (2013) Casuarina glauca: a model tree for basic research in actinorhizal symbiosis. J Biosci 38:815–823CrossRefGoogle Scholar
- 29.Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711CrossRefGoogle Scholar
- 30.Zhang Z, Lopez MF, Torrey JG (1984) A comparison of cultural characteristics and infectivity of Frankia isolates from root nodules of Casuarina species. In: Frankia Symbioses. Springer, New York, pp 79–90CrossRefGoogle Scholar
- 31.Murry MA, Fontaine MS, Torrey JG (1984) Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. In: Frankia symbioses. Springer, New York, pp 61–78CrossRefGoogle Scholar
- 32.Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080PubMedPubMedCentralGoogle Scholar
- 33.Hoagland DR, Arnon DI et al (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347:32Google Scholar
- 34.Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M (2011) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210CrossRefGoogle Scholar
- 35.Gonzales MD, Archuleta E, Farmer A, Gajendran K, Grant D, Shoemaker R, Beavis WD, Waugh ME (2005) The legume information system (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res 33:D660–D665CrossRefGoogle Scholar
- 36.Clavijo F, Diedhiou I, Vaissayre V, Brottier L, Acolatse J, Moukouanga D, Crabos A, Auguy F, Franche C, Gherbi H et al (2015) The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol 208:887–903CrossRefGoogle Scholar
- 37.Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Gherbi H, Hocher V, SVISTOONOFF S, Laplaze L, Tisa L et al (2016) Symbiotic performance of diverse Frankia strains on salt-stressed Casuarina glauca and Casuarina equisetifolia plants. Front Plant Sci 7:1331CrossRefGoogle Scholar
- 38.Ngom M, Diagne N, Laplaze L, Champion A, Sy MO (2016) Symbiotic ability of diverse Frankia strains on Casuarina glauca plants in hydroponic conditions. Symbiosis 70:79–86CrossRefGoogle Scholar
- 39.Grennan AK (2006) Genevestigator. Facilitating web-based gene-expression analysis. Plant Physiol 141:1164–1166CrossRefGoogle Scholar