Establishment of Actinorhizal Symbiosis in Response to Ethylene, Salicylic Acid, and Jasmonate

  • Mariama Ngom
  • Maimouna Cissoko
  • Krystelle Gray
  • Valérie Hocher
  • Laurent Laplaze
  • Mame Ourèye Sy
  • Sergio Svistoonoff
  • Antony ChampionEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2085)


Phytohormones play a crucial role in regulating plant developmental processes. Among them, ethylene and jasmonate are known to be involved in plant defense responses to a wide range of biotic stresses as their levels increase with pathogen infection. In addition, these two phytohormones have been shown to inhibit plant nodulation in legumes. Here, exogenous salicylic acid (SA), jasmonate acid (JA), and ethephon (ET) were applied to the root system of Casuarina glauca plants before Frankia inoculation, in order to analyze their effects on the establishment of actinorhizal symbiosis. This protocol further describes how to identify putative ortholog genes involved in ethylene and jasmonate biosynthesis and/or signaling pathways in plant, using the Arabidopsis Information Resource (TAIR), Legume Information System (LIS), and Genevestigator databases. The expression of these genes in response to the bacterium Frankia was analyzed using the gene atlas for Casuarina–Frankia symbiosis (SESAM web site).

Key words

Ethylene Jasmonate Actinorhizal symbiosis Frankia Casuarina glauca 



This work was supported, in part, by the Institut de Recherche pour le Développement (IRD) and the Agence Universitaire de la Francophonie (AUF) through the interregional doctoral college in food and plant biotechnology (CD-BIOVEGAGRO) and grants from the USDA National Institute of Food and Agriculture (Hatch 022821) and USDA AFRI (A1151 2014-03765). M. Ngom was supported by the Ministère de l’Enseignement Supérieur et de la Recherche du Sénégal, national grant (MERS), the Word Federation of Scientists, research allowance (WFS), and the ARTS, PhD grant (IRD).


  1. 1.
    Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, New York, pp 1–15CrossRefGoogle Scholar
  2. 2.
    Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488CrossRefGoogle Scholar
  3. 3.
    Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295CrossRefGoogle Scholar
  4. 4.
    Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86CrossRefGoogle Scholar
  5. 5.
    Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458CrossRefGoogle Scholar
  6. 6.
    Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43:439–463CrossRefGoogle Scholar
  7. 7.
    Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058CrossRefGoogle Scholar
  8. 8.
    Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 395–412CrossRefGoogle Scholar
  9. 9.
    Yan Y, Borrego E, Kolomiets MV (2013) Jasmonate biosynthesis, perception and function in plant development and stress responses. In: Lipid metabolism. IntechOpen, LondonGoogle Scholar
  10. 10.
    Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A 89:2389–2393CrossRefGoogle Scholar
  11. 11.
    Kapoor R (2008) Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. Online J Biol Sci 8:49–56CrossRefGoogle Scholar
  12. 12.
    Vijayan P, Shockey J, Lévesque CA, Cook RJ (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci U S A 95:7209–7214CrossRefGoogle Scholar
  13. 13.
    Feng Y-J, Wang J-W, Luo S-M (2007) Effects of exogenous jasmonic acid on concentrations of direct-defense chemicals and expression of related genes in bt (Bacillus thuringiensis) corn (Zea mays). Agric Sci China 6:1456–1462CrossRefGoogle Scholar
  14. 14.
    Chen H-Y, Hsieh E-J, Cheng M-C, Chen C-Y, Hwang S-Y, Lin T-P (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol 211:599–613CrossRefGoogle Scholar
  15. 15.
    Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100CrossRefGoogle Scholar
  16. 16.
    Schaller F, Biesgen C, Müssig C, Altmann T, Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984CrossRefGoogle Scholar
  17. 17.
    Cacas JL, Pré M, Pizot M, Cissoko M, Diedhiou I, Jalloul A, Doumas P, Nicole M, Champion A (2017) GhERF-IIb3 regulates the accumulation of jasmonate and leads to enhanced cotton resistance to blight disease. Molecular Plant Pathology 18:825–836CrossRefGoogle Scholar
  18. 18.
    Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151CrossRefGoogle Scholar
  19. 19.
    Van Loon LC, Geraats BP, Linthorst HJ (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191CrossRefGoogle Scholar
  20. 20.
    Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950CrossRefGoogle Scholar
  21. 21.
    Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479CrossRefGoogle Scholar
  22. 22.
    Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849CrossRefGoogle Scholar
  23. 23.
    Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970CrossRefGoogle Scholar
  24. 24.
    Reid D, Liu H, Kelly S, Kawaharada Y, Mun T, Andersen SU, Desbrosses G, Stougaard J (2018) Dynamics of ethylene production in response to compatible Nod factor. Plant Physiol 176:1764–1772CrossRefGoogle Scholar
  25. 25.
    Van Spronsen PC, Tak T, Rood AM, van Brussel AA, Kijne JW, Boot KJ (2003) Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Mol Plant-Microbe Interact 16:83–91CrossRefGoogle Scholar
  26. 26.
    Tromas A, Parizot B, Diagne N, Champion A, Hocher V, Cissoko M, Crabos A, Prodjinoto H, Lahouze B, Bogusz D et al (2012) Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 7:e44742CrossRefGoogle Scholar
  27. 27.
    Diédhiou I, Tromas A, Cissoko M, Gray K, Parizot B, Crabos A, Alloisio N, Fournier P, Carro L, Svistoonoff S (2014) Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa. BMC Plant Biol 14:342CrossRefGoogle Scholar
  28. 28.
    Zhong C, Mansour S, Nambiar-Veetil M, Bogusz D, Franche C (2013) Casuarina glauca: a model tree for basic research in actinorhizal symbiosis. J Biosci 38:815–823CrossRefGoogle Scholar
  29. 29.
    Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Lopez MF, Torrey JG (1984) A comparison of cultural characteristics and infectivity of Frankia isolates from root nodules of Casuarina species. In: Frankia Symbioses. Springer, New York, pp 79–90CrossRefGoogle Scholar
  31. 31.
    Murry MA, Fontaine MS, Torrey JG (1984) Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. In: Frankia symbioses. Springer, New York, pp 61–78CrossRefGoogle Scholar
  32. 32.
    Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hoagland DR, Arnon DI et al (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347:32Google Scholar
  34. 34.
    Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M (2011) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210CrossRefGoogle Scholar
  35. 35.
    Gonzales MD, Archuleta E, Farmer A, Gajendran K, Grant D, Shoemaker R, Beavis WD, Waugh ME (2005) The legume information system (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res 33:D660–D665CrossRefGoogle Scholar
  36. 36.
    Clavijo F, Diedhiou I, Vaissayre V, Brottier L, Acolatse J, Moukouanga D, Crabos A, Auguy F, Franche C, Gherbi H et al (2015) The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol 208:887–903CrossRefGoogle Scholar
  37. 37.
    Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Gherbi H, Hocher V, SVISTOONOFF S, Laplaze L, Tisa L et al (2016) Symbiotic performance of diverse Frankia strains on salt-stressed Casuarina glauca and Casuarina equisetifolia plants. Front Plant Sci 7:1331CrossRefGoogle Scholar
  38. 38.
    Ngom M, Diagne N, Laplaze L, Champion A, Sy MO (2016) Symbiotic ability of diverse Frankia strains on Casuarina glauca plants in hydroponic conditions. Symbiosis 70:79–86CrossRefGoogle Scholar
  39. 39.
    Grennan AK (2006) Genevestigator. Facilitating web-based gene-expression analysis. Plant Physiol 141:1164–1166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Mariama Ngom
    • 1
    • 2
    • 3
  • Maimouna Cissoko
    • 1
    • 2
  • Krystelle Gray
    • 1
  • Valérie Hocher
    • 4
  • Laurent Laplaze
    • 5
  • Mame Ourèye Sy
    • 1
    • 3
  • Sergio Svistoonoff
    • 1
    • 2
    • 4
  • Antony Champion
    • 5
    Email author
  1. 1.Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress EnvironnementauxCentre de Recherche de Bel-AirDakarSenegal
  2. 2.Laboratoire Commun de Microbiologie, Centre de Recherche de Bel-AirInstitut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakarSenegal
  3. 3.Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakar-FannSenegal
  4. 4.Laboratoire des Symbioses Tropicales et MéditerranéennesInstitut de Recherche pour le Développement/INRA/CIRAD/Université Montpellier/SupagroMMontpellierFrance
  5. 5.UMR DIADE - IRDMontpellierFrance

Personalised recommendations