Advertisement

Plant–Insect Bioassay for Testing Arabidopsis Resistance to the Generalist Herbivore Spodoptera littoralis

  • Stefan Mielke
  • Debora GasperiniEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2085)

Abstract

Jasmonates are essential engineers of plant defense responses against many pests, including herbivorous insects. Herbivory induces the production of jasmonic acid (JA) and its bioactive conjugate jasmonoyl-l-isoleucine (JA-Ile), which then triggers a large transcriptional reprogramming to promote plant acclimation. The contribution of the JA pathway, including its components and regulators, to defense responses against insect herbivory can be evaluated by conducting bioassays with a wide range of host plants and insect pests. Here, we describe a detailed and reproducible protocol for testing feeding behavior of the generalist herbivore Spodoptera littoralis on the model plant Arabidopsis thaliana and hence infer the contribution of JA-mediated plant defense responses to a chewing insect.

Key words

Plant-insect bioassay Generalist herbivore Spodoptera littoralis Caterpillar Arabidopsis thaliana Jasmonic acid 

Notes

Acknowledgments

We are grateful to O. Kindler and R. Reist (Stein, CH) for providing S. littoralis eggs; to E. Warkus (Halle, DE) for manufacturing the custom-made bioassay cages; and to the Deutsche Forschungsgemeinschaft (grant GA 2419/2-1 to D.G.) and IPB–Leibniz Association for funding.

References

  1. 1.
    Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146(3):852–858.  https://doi.org/10.1104/pp.107.112177CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5(5):344–350.  https://doi.org/10.1038/nchembio.161CrossRefPubMedGoogle Scholar
  3. 3.
    Koo AJ, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70(13–14):1571–1580.  https://doi.org/10.1016/j.phytochem.2009.07.018CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98(3):995–1002CrossRefGoogle Scholar
  5. 5.
    Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A 87(19):7713–7716CrossRefGoogle Scholar
  6. 6.
    Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Functional Ecology 25(2):420–432.  https://doi.org/10.1111/j.1365-2435.2010.01796.xCrossRefGoogle Scholar
  7. 7.
    Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist 156(2):145–169.  https://doi.org/10.1046/j.1469-8137.2002.00519.xCrossRefGoogle Scholar
  8. 8.
    Schuman MC, Baldwin IT (2016) The layers of plant responses to insect herbivores. Annu Rev Entomol 61:373–394.  https://doi.org/10.1146/annurev-ento-010715-023851CrossRefPubMedGoogle Scholar
  9. 9.
    Verhage A, Vlaardingerbroek I, Raaymakers C, Van Dam NM, Dicke M, Van Wees SC, Pieterse CM (2011) Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front Plant Sci 2:47.  https://doi.org/10.3389/fpls.2011.00047CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66.  https://doi.org/10.1146/annurev.arplant.59.032607.092825CrossRefPubMedGoogle Scholar
  11. 11.
    McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A 94(10):5473–5477CrossRefGoogle Scholar
  12. 12.
    Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125(2):1074–1085CrossRefGoogle Scholar
  13. 13.
    Stotz HU, Koch T, Biedermann A, Weniger K, Boland W, Mitchell-Olds T (2002) Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214(4):648–652CrossRefGoogle Scholar
  14. 14.
    Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19(7):2225–2245.  https://doi.org/10.1105/tpc.106.048017CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305(5684):665–668.  https://doi.org/10.1126/science.1096931CrossRefPubMedGoogle Scholar
  16. 16.
    Abe H, Onnishi J, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M (2008) Arabidopsis-thrips system for analysis of plant response to insect feeding. Plant Signal Behav 3(7):446–447CrossRefGoogle Scholar
  17. 17.
    Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V, Rubio-Somoza I, Krishna P, Diaz I, Schmid M, Gomez-Cadenas A, Van de Peer Y, Grbic M, Clark RM, Van Leeuwen T, Grbic V (2014) Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. Plant Physiol 164(1):384–399.  https://doi.org/10.1104/pp.113.231555CrossRefPubMedGoogle Scholar
  18. 18.
    Knolhoff LM, Heckel DG (2014) Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu Rev Entomol 59:263–278.  https://doi.org/10.1146/annurev-ento-011613-161945CrossRefPubMedGoogle Scholar
  19. 19.
    Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17(5):293–302.  https://doi.org/10.1016/j.tplants.2012.02.006CrossRefPubMedGoogle Scholar
  20. 20.
    Gols R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34(2):132–143.  https://doi.org/10.1007/s10886-008-9429-zCrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161(1):325–332PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175(1):176–184.  https://doi.org/10.1111/j.1469-8137.2007.02090.xCrossRefPubMedGoogle Scholar
  23. 23.
    Health EPP (2015) Scientific Opinion on the pest categorisation of Spodoptera littoralis. EFSA J 13:1.  https://doi.org/10.2903/j.efsa.2015.3987CrossRefGoogle Scholar
  24. 24.
    Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19(8):2470–2483.  https://doi.org/10.1105/tpc.107.050708CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gasperini D, Chetelat A, Acosta IF, Goossens J, Pauwels L, Goossens A, Dreos R, Alfonso E, Farmer EE (2015) Multilayered organization of jasmonate signalling in the regulation of root growth. PLoS Genetics 11(6):e1005300.  https://doi.org/10.1371/journal.pgen.1005300CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, Zebelo SA, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, Sawasaki T, Arimura G (2010) Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 10:97.  https://doi.org/10.1186/1471-2229-10-97CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Khan GA, Vogiatzaki E, Glauser G, Poirier Y (2016) Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol 171(1):632–644.  https://doi.org/10.1104/pp.16.00278CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16(11):3132–3147.  https://doi.org/10.1105/tpc.104.026120CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Scholz SS, Vadassery J, Heyer M, Reichelt M, Bender KW, Snedden WA, Boland W, Mithofer A (2014) Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. Mol Plant 7(12):1712–1726.  https://doi.org/10.1093/mp/ssu102CrossRefPubMedGoogle Scholar
  30. 30.
    Schweizer F, Fernandez-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25(8):3117–3132.  https://doi.org/10.1105/tpc.113.115139CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31(1):1–12CrossRefGoogle Scholar
  32. 32.
    Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366):1091–1094CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Molecular Signal ProcessingLeibniz Institute of Plant BiochemistryHalle (Saale)Germany

Personalised recommendations