Skip to main content

Molecular Pathway Analysis of Mutation Data for Biomarkers Discovery and Scoring of Target Cancer Drugs

  • Protocol
  • First Online:
Nucleic Acid Detection and Structural Investigations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2063))

Abstract

DNA mutations govern cancer development. Cancer mutation profiles vary dramatically among the individuals. In some cases, they may serve as the predictors of disease progression and response to therapies. However, the biomarker potential of cancer mutations can be dramatically (several orders of magnitude) enhanced by applying molecular pathway-based approach. We developed Oncobox system for calculation of pathway instability (PI) values for the molecular pathways that are aggregated mutation frequencies of the pathway members normalized on gene lengths and on number of genes in the pathway. PI scores can be effective biomarkers in different types of comparisons, for example, as the cancer type biomarkers and as the predictors of tumor response to target therapies. The latter option is implemented using mutation drug score (MDS) values, which algorithmically rank the drugs capacity of interfering with the mutated molecular pathways. Here, describe the mathematical basis and algorithms for PI and MDS values calculation, validation and implementation. The example analysis is provided encompassing 5956 human tumor mutation profiles of 15 cancer types from The Cancer Genome Atlas (TCGA) project, that totally make 2,316,670 mutations in 19,872 genes and 1748 molecular pathways, thus enabling ranking of 128 clinically approved target drugs. Our results evidence that the Oncobox PI and MDS approaches are highly useful for basic and applied aspects of molecular oncology and pharmacology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDS length:

Coding DNA sequence length

COSMIC:

Catalogue of somatic mutations in cancer

FDA:

Food and Drug Administration

ICGC:

International Cancer Genome Consortium

MDS:

Mutational Drug Scores

MR:

Mutation rate

NIH:

The National Institutes of Health

nMR:

Normalized mutation rate

PI:

Pathway instability

ROC AUC:

Receiver operator characteristics area under the curve

TC:

Target conversion

TCGA:

The Cancer Genome Atlas

References

  1. Sieber O, Heinimann K, Tomlinson I (2005) Genomic stability and tumorigenesis. Semin Cancer Biol 15:61–66

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM et al (2010) Signatures of mutation and selection in the cancer genome. Nature 463:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al (2010) International network of cancer genome projects. Nature 464:993–998

    Article  CAS  Google Scholar 

  7. Rafiq S, Khan S, Tapper W, Collins A, Upstill-Goddard R, Gerty S et al (2014) A genome wide meta-analysis study for identification of common variation associated with breast cancer prognosis. PLoS One 9:e101488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mitra AP, Lerner SP (2015) Potential role for targeted therapy in muscle-invasive bladder cancer: lessons from the cancer genome atlas and beyond. Urol Clin North Am 42:201–215

    Article  PubMed  Google Scholar 

  9. Hanna N, Einhorn LH (2014) Testicular cancer: a reflection on 50 years of discovery. J Clin Oncol 32:3085–3092

    Article  CAS  PubMed  Google Scholar 

  10. Oldenburg A, Hohmann J, Foert E, Skrok J, Hoffmann C, Frericks B et al (2005) Detection of hepatic metastases with low MI real time contrast enhanced sonography and SonoVue®. Eur J Ultrasound 26:277–284

    CAS  Google Scholar 

  11. Vasey PA (2003) Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies. Br J Cancer 89(Suppl 3):S23–S28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N et al (2014) Drug resistance in cancer: an overview. Cancers (Basel) 6:1769–1792

    Article  CAS  Google Scholar 

  13. Sawyers C (2004) Targeted cancer therapy. Nature 432:294–297

    Article  CAS  PubMed  Google Scholar 

  14. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042

    Article  CAS  PubMed  Google Scholar 

  15. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  16. Spirin P, Lebedev T, Orlova N, Morozov A, Poymenova N, Dmitriev SE et al (2017) Synergistic suppression of t(8;21)-positive leukemia cell growth by combining oridonin and MAPK1/ERK2 inhibitors. Oncotarget 8:56991–57002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Joo WD, Visintin I, Mor G (2013) Targeted cancer therapy—are the days of systemic chemotherapy numbered? Maturitas 76:308–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Padma VV (2015) An overview of targeted cancer therapy. Biomedicine 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baselga J (2006) Targeting tyrosine kinases in cancer: the second wave. Science 312:1175–1178

    Article  CAS  PubMed  Google Scholar 

  20. Rini BI (2009) Vascular endothelial growth factor-targeted therapy in metastatic renal cell carcinoma. Cancer 115:2306–2312

    Article  CAS  PubMed  Google Scholar 

  21. Azoury SC, Straughan DM, Shukla V (2015) Immune checkpoint inhibitors for cancer therapy: clinical efficacy and safety. Curr Cancer Drug Targets 15:452–462

    Article  CAS  PubMed  Google Scholar 

  22. Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW et al (2010) Poly(ADP-ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer. Clin Cancer Res 16:4702–4710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie J, Wang X, Proud CG (2016) mTOR inhibitors in cancer therapy. F1000Res 5:F1000 Faculty Rev-2078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ko YJ, Balk SP (2004) Targeting steroid hormone receptor pathways in the treatment of hormone dependent cancers. Curr Pharm Biotechnol 5:459–470

    Article  CAS  PubMed  Google Scholar 

  25. Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki M, Cheung N-K V (2015) Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets 19:349–362

    Article  CAS  PubMed  Google Scholar 

  27. Giles FJ, Cortes JE, Kantarjian HM (2005) Targeting the kinase activity of the BCR-ABL fusion protein in patients with chronic myeloid leukemia. Curr Mol Med 5:615–623

    Article  CAS  PubMed  Google Scholar 

  28. Nahta R, Esteva FJ (2007) Trastuzumab: triumphs and tribulations. Oncogene 26:3637–3643

    Article  CAS  PubMed  Google Scholar 

  29. Hudis CA (2007) Trastuzumab – mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  CAS  PubMed  Google Scholar 

  30. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prieto PA, Yang JC, Sherry RM, Hughes MS, Kammula US, White DE et al (2012) CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res 18:2039–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma Q, Lu AYH (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63:437–459

    Article  CAS  PubMed  Google Scholar 

  33. Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5:288–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097

    Article  CAS  PubMed  Google Scholar 

  35. Buzdin A, Sorokin M, Garazha A, Sekacheva M, Kim E, Zhukov N et al (2018) Molecular pathway activation – new type of biomarkers for tumor morphology and personalized selection of target drugs. Semin Cancer Biol 53:110–124

    Article  CAS  PubMed  Google Scholar 

  36. Hornberger J, Cosler LE, Lyman GH (2005) Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 11:313–324

    PubMed  Google Scholar 

  37. Le Tourneau C, Paoletti X, Servant N, Bièche I, Gentien D, Rio Frio T et al (2014) Randomised proof-of-concept phase II trial comparing targeted therapy based on tumour molecular profiling vs conventional therapy in patients with refractory cancer: results of the feasibility part of the SHIVA trial. Br J Cancer 111:17–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Røsland GV, Engelsen AST (2015) Novel points of attack for targeted cancer therapy. Basic Clin Pharmacol Toxicol 116:9–18

    Article  PubMed  CAS  Google Scholar 

  39. Duffy MJ (2017) Clinical use of tumor biomarkers: an overview. Klin Biochem Metab 25:157–161

    Google Scholar 

  40. Sowter HM, Ashworth A (2005) BRCA1 and BRCA2 as ovarian cancer susceptibility genes. Carcinogenesis 26:1651–1656

    Article  CAS  PubMed  Google Scholar 

  41. Thériault C, Pinard M, Comamala M, Migneault M, Beaudin J, Matte I et al (2011) MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol Oncol 121:434–443

    Article  PubMed  CAS  Google Scholar 

  42. Zhang Q, Burdette JE, Wang J-P (2014) Integrative network analysis of TCGA data for ovarian cancer. BMC Syst Biol 8:1338

    Article  PubMed  PubMed Central  Google Scholar 

  43. Buzdin AA, Zhavoronkov AA, Korzinkin MB, Venkova LS, Zenin AA, Smirnov PY et al (2014) Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data. Front Genet 5:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ozerov IV, Lezhnina KV, Izumchenko E, Artemov AV, Medintsev S, Vanhaelen Q et al (2016) In silico pathway activation network decomposition analysis (iPANDA) as a method for biomarker development. Nat Commun 7:13427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Borisov N, Suntsova M, Sorokin M, Garazha A, Kovalchuk O, Aliper A et al (2017) Data aggregation at the level of molecular pathways improves stability of experimental transcriptomic and proteomic data. Cell cycle 16:1810–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Artcibasova AV, Korzinkin MB, Sorokin MI, Shegay PV, Zhavoronkov AA, Gaifullin N et al (2016) MiRImpact, a new bioinformatic method using complete microRNA expression profiles to assess their overall influence on the activity of intracellular molecular pathways. Cell Cycle 15:689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aliper AM, Korzinkin MB, Kuzmina NB, Zenin AA, Venkova LS, Smirnov PY et al (2017) Mathematical justification of expression-based pathway activation scoring (PAS). Methods Mol Biol 1613:31–51

    Article  CAS  PubMed  Google Scholar 

  48. Chong M-L, Loh M, Thakkar B, Pang B, Iacopetta B, Soong R (2014) Phosphatidylinositol-3-kinase pathway aberrations in gastric and colorectal cancer: meta-analysis, co-occurrence and ethnic variation. Int J Cancer 134:1232–1238

    Article  CAS  PubMed  Google Scholar 

  49. Li H, Zeng J, Shen K (2014) PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet 290:1067–1078

    Article  CAS  PubMed  Google Scholar 

  50. Toren P, Zoubeidi A (2014) Targeting the PI3K/Akt pathway in prostate cancer: challenges and opportunities (Review). Int J Oncol 45:1793–1801

    Article  CAS  PubMed  Google Scholar 

  51. Borisov N, Sorokin M, Garazha AV, Buzdin A (2019) Quantitation of molecular pathway activation using RNA sequencing data. Methods Mol Biol. (In Press)

    Google Scholar 

  52. Borisov NM, Terekhanova NV, Aliper AM, Venkova LS, Smirnov PY, Roumiantsev S et al (2014) Signaling pathways activation profiles make better markers of cancer than expression of individual genes. Oncotarget 5:10198–10205

    Article  PubMed  PubMed Central  Google Scholar 

  53. Buzdin AA, Zhavoronkov AA, Korzinkin MB, Roumiantsev SA, Aliper AM, Venkova LS et al (2014) The OncoFinder algorithm for minimizing the errors introduced by the high-throughput methods of transcriptome analysis. Front Mol Biosci 1:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wirsching A, Melloul E, Lezhnina K, Buzdin AA, Ogunshola OO, Borger P et al (2017) Temporary portal vein embolization is as efficient as permanent portal vein embolization in mice. Surgery 162:68–81

    Article  PubMed  Google Scholar 

  55. Kurz S, Thieme R, Amberg R, Groth M, Jahnke H-G, Pieroh P et al (2017) The anti-tumorigenic activity of A2M-A lesson from the naked mole-rat. PLoS One 12:e0189514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Petrov I, Suntsova M, Ilnitskaya E, Roumiantsev S, Sorokin M, Garazha A et al (2017) Gene expression and molecular pathway activation signatures of MYCN-amplified neuroblastomas. Oncotarget 8:83768–83780

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sorokin M, Kholodenko R, Grekhova A, Suntsova M, Pustovalova M, Vorobyeva N et al (2018) Acquired resistance to tyrosine kinase inhibitors may be linked with the decreased sensitivity to X-ray irradiation. Oncotarget 9:5111–5124

    Article  PubMed  Google Scholar 

  58. Zolotovskaia MA, Sorokin MI, Roumiantsev SA, Borisov NM, Buzdin AA (2018) Pathway instability is an effective new mutation-based type of cancer biomarkers. Front Oncol 8:658

    Article  PubMed  Google Scholar 

  59. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J et al (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D783

    Article  CAS  PubMed  Google Scholar 

  60. Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19:A68–A77

    Google Scholar 

  61. Zolotovskaia MA, Sorokin MI, Emelianova AA, Borisov NM, Kuzmin DV, Borger P et al (2019) Pathway based analysis of mutation data is efficient for scoring target cancer drugs. Front Pharmacol 10:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  CAS  PubMed  Google Scholar 

  63. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T et al (2009) PID: the pathway interaction database. Nucleic Acids Res 37:D674–D679

    Article  CAS  PubMed  Google Scholar 

  64. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2004) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6:R2

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nishimura D (2001) BioCarta. Biotech Software Internet Rep 2:117–120

    Article  Google Scholar 

  67. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  68. Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New York, NY

    Book  Google Scholar 

  69. Green DM, Swets JA et al (1966) Signal detection theory and psychophysics. Wiley, New York, NY

    Google Scholar 

  70. Boyd JC (1997) Mathematical tools for demonstrating the clinical usefulness of biochemical markers. Scand J Clin Lab Invest Suppl 227:46–63

    Article  CAS  PubMed  Google Scholar 

  71. Fodde R (2002) The APC gene in colorectal cancer. Eur J Cancer 38:867–871

    Article  CAS  PubMed  Google Scholar 

  72. Risinger JI, Hayes K, Maxwell GL, Carney ME, Dodge RK, Barrett JC et al (1998) PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res 4:3005–3010

    CAS  PubMed  Google Scholar 

  73. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627

    Article  CAS  PubMed  Google Scholar 

  74. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31:274–295

    Article  Google Scholar 

  76. Zhu Q, Izumchenko E, Aliper AM, Makarev E, Paz K, Buzdin AA et al (2015) Pathway activation strength is a novel independent prognostic biomarker for cetuximab sensitivity in colorectal cancer patients. Hum Genome Variat 2:15009

    Article  CAS  Google Scholar 

  77. Nikitin D, Penzar D, Garazha A, Sorokin M, Tkachev V, Borisov N et al (2018) Profiling of human molecular pathways affected by retrotransposons at the level of regulation by transcription factor proteins. Front Immunol 9:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Moore CB, Wallace JR, Frase AT, Pendergrass SA, Ritchie MD (2013) BioBin: a bioinformatics tool for automating the binning of rare variants using publicly available biological knowledge. BMC Med Genomics 6(Suppl 2):S6

    PubMed  PubMed Central  Google Scholar 

  79. Kim D, Li R, Dudek SM, Wallace JR, Ritchie MD (2015) Binning somatic mutations based on biological knowledge for predicting survival: an application in renal cell carcinoma. Pacific symposium biocomputing, pp. 96–107

    Google Scholar 

  80. Park S, Kim S-J, Yu D, Peña-Llopis S, Gao J, Park JS et al (2016) An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types. Bioinformatics 32:1643–1651

    Article  CAS  PubMed  Google Scholar 

  81. QIAGEN. Sample to insight. https://www.qiagen.com/us/shop/genes-and-pathways/pathway-central/. Accessed 19 Sep 2018

Download references

Acknowledgment

Funding: This study was supported by the Oncobox research program in digital oncology, by the Russian Science Foundation grant no. 18-15-00061, by Amazon and Microsoft Azure grants for cloud-based computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Buzdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zolotovskaia, M., Sorokin, M., Garazha, A., Borisov, N., Buzdin, A. (2020). Molecular Pathway Analysis of Mutation Data for Biomarkers Discovery and Scoring of Target Cancer Drugs. In: Astakhova, K., Bukhari, S. (eds) Nucleic Acid Detection and Structural Investigations. Methods in Molecular Biology, vol 2063. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0138-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0138-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0137-2

  • Online ISBN: 978-1-0716-0138-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics