Advertisement

Lipidomics by HILIC-Ion Mobility-Mass Spectrometry

  • Amy Li
  • Kelly M. Hines
  • Libin XuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2084)

Abstract

Lipidomics is a rapidly growing field that enables the characterization of the entire lipidome in cells, tissues, or an organism. Changes in lipid metabolism and homeostasis caused by different disease states or drug treatments can be probed by lipidomics experiments, which can aid our understanding of normal physiology and disease pathology at the molecular level. While current technologies using liquid chromatography coupled with high-resolution mass spectrometry have greatly increased coverage of the lipidome, there are still limitations in resolving the large number of lipid species with similar masses in a narrow mass window. We recently reported that two orthogonal separation techniques, hydrophilic interaction liquid chromatography (HILIC) and ion mobility (IM), enhance the resolution of lipid species based on headgroup polarity and gas-phase size and shape, respectively, of various classes of glycerolipids, glycolipids, phospholipids, and sphingolipids. Here we describe the application of our HILIC-IM-MS lipidomics protocol to the analysis of lipid extracts derived from either tissues or cells, to identify significant changes in the lipidome in response to an internal or external stimulus, such as exposure to environmental chemicals.

Key words

Hydrophilic interaction liquid chromatography Ion mobility Mass spectrometry Lipidomics Collision cross section 

Notes

Acknowledgements

This work was supported by grants from National Institutes of Health (R00HD073270 and R01HD092659). A.L. is an appointed trainee of the Pharmacological Sciences Training Program funded by the National Institutes of Health (T32GM007750).

References

  1. 1.
    Jurowski K, Kochan K, Walczak J, Baranska M, Piekoszewski W, Buszewski B (2017) Analytical techniques in lipidomics: state of the art. Crit Rev Anal Chem 47:418–437CrossRefGoogle Scholar
  2. 2.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610CrossRefGoogle Scholar
  3. 3.
    Rustam YH, Reid GE (2018) Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal Chem 90:374–397CrossRefGoogle Scholar
  4. 4.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861CrossRefGoogle Scholar
  5. 5.
    Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–S14CrossRefGoogle Scholar
  6. 6.
    Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412CrossRefGoogle Scholar
  7. 7.
    Schwudke D, Liebisch G, Herzog R, Schmitz G, Shevchenko A (2007) Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol 433:175–191CrossRefGoogle Scholar
  8. 8.
    Quehenberger O et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305CrossRefGoogle Scholar
  9. 9.
    Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–224CrossRefGoogle Scholar
  10. 10.
    Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA (2007) Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol 432:21–57CrossRefGoogle Scholar
  11. 11.
    Baker PR, Armando AM, Campbell JL, Quehenberger O, Dennis EA (2014) Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J Lipid Res 55:2432–2442.  https://doi.org/10.1194/jlr.D051581CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cifkova E, Holcapek M, Lisa M, Ovcacikova M, Lycka A, Lynen F, Sandra P (2012) Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal Chem 84:10064–10070CrossRefGoogle Scholar
  13. 13.
    Hinz C, Liggi S, Griffin JL (2018) The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics. Curr Opin Chem Biol 42:42–50CrossRefGoogle Scholar
  14. 14.
    Hines K, Herron J, Xu L (2017) Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. J Lipid Res 58:809–819CrossRefGoogle Scholar
  15. 15.
    Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, Xu L (2017) Characterization of the mechanisms of daptomycin resistance among gram-positive bacterial pathogens by multidimensional lipidomics. mSphere 2:e00492–e00417CrossRefGoogle Scholar
  16. 16.
    Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 1811:935–945CrossRefGoogle Scholar
  17. 17.
    Fenn LS, McLean JA (2008) Biomolecular structural separations by ion mobility-mass spectrometry. Anal Bioanal Chem 391:905–909CrossRefGoogle Scholar
  18. 18.
    McLean JA, Ruotolo BT, Gillig KJ, Russell DH (2005) Ion mobility-mass spectrometry: a new paradigm for proteomics. Int J Mass Spectrom 240:301–315CrossRefGoogle Scholar
  19. 19.
    Mason EA, Schamp HW Jr (1958) Mobility of gaseous ions in weak electric fields. Ann Phys 4:233–270CrossRefGoogle Scholar
  20. 20.
    Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, New York, NYCrossRefGoogle Scholar
  21. 21.
    Hines KM, May JC, McLean JA, Xu L (2016) Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem 88:7329–7336CrossRefGoogle Scholar
  22. 22.
    Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152CrossRefGoogle Scholar
  23. 23.
    Forsythe JG, Petrov AS, Walker CA, Allen SJ, Pellissier JS, Bush MF, Hud NV, Fernandez FM (2015) Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst 140:6853–6861CrossRefGoogle Scholar
  24. 24.
    Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA (2009) Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 394:235–244CrossRefGoogle Scholar
  25. 25.
    May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, Mordehai A, Klein C, Barry W, Darland E, Overney G, Imatani K, Stafford GC, Fjeldsted JC, McLean JA (2014) Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem 86:2107–2116CrossRefGoogle Scholar
  26. 26.
    Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ, Thompson JW, Menikarachchi L, Lai S, Walsh C, Moseley A, Plumb RS, Grant DF, Palsson BO, Langridge J, Geromanos S, Astarita G (2015) Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87:1137–1144CrossRefGoogle Scholar
  27. 27.
    Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, Cha J, Sun X, Lovelace ES, Wagoner J, Polyak SJ, Metz TO, Dey SK, Smith RD, Burnum-Johnson KE, Baker ES (2016) Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141:1649–1659CrossRefGoogle Scholar
  28. 28.
    Zhou Z, Tu J, Xiong X, Shen X, Zhu ZJ (2017) LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal Chem 89:9559–9566CrossRefGoogle Scholar
  29. 29.
    Zhou Z, Shen X, Chen X, Tu J, Xiong X, Zhu ZJ (2019) LipidIMMS analyzer: integrating multi-dimensional information to support lipid identification in ion mobility- mass spectrometry based lipidomics. Bioinformatics 35:698–700.  https://doi.org/10.1093/bioinformatics/bty1661CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Medicinal ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations