Advertisement

Drift-Tube Ion Mobility-Mass Spectrometry for Nontargeted ′Omics

  • Tim J. CausonEmail author
  • Ruwan T. Kurulugama
  • Stephan Hann
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2084)

Abstract

This chapter describes the developments in drift-tube ion mobility-mass spectrometry (DTIM-MS) that have driven application development in ′omics analyses. Harnessing the additional, orthogonal separation that DTIM provides increased confidence in compound identifications as the mass spectral complexity can be reduced and mobility-derived parameters (most prominently the collision cross section, CCS) used to support identity confirmation goals for a variety of ′omics application areas. Presented within this contribution is a methodology for improving the transmission and maintaining accurate determination of drift time-derived CCS (DTCCS) for low molecular weight compounds for a typical nontargeted ′omics (metabolomics) workflow using liquid chromatography in combination with DTIM-MS.

Key words

Collision cross section CCS databases Drift-tube ion mobility-mass spectrometry Ion mobility Mass spectrometry Metabolomics Non-targeted analysis Small molecules 

Notes

Acknowledgements

Vienna Business Agency and EQ BOKU VIBT GmbH are acknowledged for providing mass spectrometry instrumentation.

References

  1. 1.
    Zeleny J (1898) VI. On the ratio of the velocities of the two ions produced in gases by Röntgen radiation; and on some related phenomena. Lond Edinb Dublin Phil Mag J Sci 46:120–154.  https://doi.org/10.1080/14786449808621173CrossRefGoogle Scholar
  2. 2.
    McDaniel EW, Mason EA (1973) The mobility and diffusion of ions in gases. Wiley, Hoboken, NJGoogle Scholar
  3. 3.
    Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, Hoboken, NJCrossRefGoogle Scholar
  4. 4.
    Cohen MJ, Karasek FW (1970) Plasma chromatography™—a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8:330–337.  https://doi.org/10.1093/chromsci/8.6.330CrossRefGoogle Scholar
  5. 5.
    Bowers MT, Kemper PR, von Helden G, van Koppen PAM (1993) Gas-phase ion chromatography: transition metal state selection and carbon cluster formation. Science 260:1446–1451CrossRefGoogle Scholar
  6. 6.
    von Helden G, Hsu MT, Gotts N, Bowers MT (1993) Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J Phys Chem 97:8182–8192.  https://doi.org/10.1021/j100133a011CrossRefGoogle Scholar
  7. 7.
    Guharay SK, Dwivedi P, Hill HH Jr (2008) Ion mobility spectrometry: Ion source development and applications in physical and biological sciences. IEEE Trans Plasma Sci 36:1458–1470.  https://doi.org/10.1109/TPS.2008.927290CrossRefGoogle Scholar
  8. 8.
    Rus J, Moro D, Sillero JA, Royuela J, Casado A, Estevez-Molinero F, Fernández de la Mora J (2010) IMS–MS studies based on coupling a differential mobility analyzer (DMA) to commercial API–MS systems. Int J Mass Spectrom 298:30–40.  https://doi.org/10.1016/j.ijms.2010.05.008CrossRefGoogle Scholar
  9. 9.
    Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22.  https://doi.org/10.1002/jms.1383CrossRefGoogle Scholar
  10. 10.
    May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87:1422–1436.  https://doi.org/10.1021/ac504720mCrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ewing MA, Glover MS, Clemmer DE (2016) Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A 1439:3–25.  https://doi.org/10.1016/j.chroma.2015.10.080CrossRefPubMedGoogle Scholar
  12. 12.
    Gabelica V, Marklund E (2018) Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 42:51–59.  https://doi.org/10.1016/j.cbpa.2017.10.022CrossRefGoogle Scholar
  13. 13.
    Bradbury NE, Nielsen RA (1936) Absolute values of the electron mobility in hydrogen. Phys Rev 49:388–393.  https://doi.org/10.1103/PhysRev.49.388CrossRefGoogle Scholar
  14. 14.
    Shaffer SA, Tang K, Anderson GA, Prior DC, Udseth HR, Smith RD (1997) A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 11:1813–1817.  https://doi.org/10.1002/(SICI)1097-0231(19971030)11:16<1813::AID-RCM87>3.0.CO;2-DCrossRefGoogle Scholar
  15. 15.
    Tang K, Shvarisburg AA, Lee H-N, Prior DC, Buschbach MA, Li F, Tolmachev AV, Anderson GA, Smith RD (2005) High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal Chem 77:3330–3339.  https://doi.org/10.1021/ac048315aCrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Page JS, Tolmachev AV, Tang K, Smith RD (2006) Theoretical and experimental evaluation of the low m/z transmission of an electrodynamic ion funnel. J Am Soc Mass Spectrom 17:586–592.  https://doi.org/10.1016/j.jasms.2005.12.013CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Baker ES, Clowers BH, Li F, Tang K, Tolmachev AV, Prior DC, Belov ME, Smith RD (2007) Ion mobility spectrometry—mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J Am Soc Mass Spectrom 18:1176–1187.  https://doi.org/10.1016/j.jasms.2007.03.031CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Clowers BH, Ibrahim YM, Prior DC, Danielson WF, Belov ME, Smith RD (2008) Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry. Anal Chem 80:612–623.  https://doi.org/10.1021/ac701648pCrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Clowers BH, Siems WF, Hill HH, Massick SM (2006) Hadamard transform ion mobility spectrometry. Anal Chem 78:44–51.  https://doi.org/10.1021/ac050615kCrossRefPubMedGoogle Scholar
  20. 20.
    Mason EA, Schamp HW (1958) Mobility of gaseous ions in weak electric fields. Ann Phys 4:233–270.  https://doi.org/10.1016/0003-4916(58)90049-6CrossRefGoogle Scholar
  21. 21.
    Valentine SJ, Plasencia MD, Liu X, Krishnan M, Naylor S, Udseth HR, Smith RD, Clemmer DE (2006) Toward plasma proteome profiling with ion mobility-mass spectrometry. J Proteome Res 5:2977–2984.  https://doi.org/10.1021/pr060232iCrossRefGoogle Scholar
  22. 22.
    Taraszka JA, Kurulugama R, Sowell RA, Valentine SJ, Koeniger SL, Arnold RJ, Miller DF, Kaufman TC, Clemmer DE (2005) Mapping the proteome of Drosophila melanogaster: analysis of embryos and adult heads by LC−IMS−MS methods. J Proteome Res 4:1223–1237.  https://doi.org/10.1021/pr050038gCrossRefPubMedGoogle Scholar
  23. 23.
    Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, Cha J, Sun X, Lovelace ES, Wagoner J, Polyak SJ, Metz TO, Dey SK, Smith RD, Burnum-Johnson KE, Baker ES (2016) Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141:1649–1659.  https://doi.org/10.1039/C5AN02062JCrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kyle JE, Casey CP, Stratton KG, Zink EM, Kim Y-M, Zheng X, Monroe ME, Weitz KK, Bloodsworth KJ, Orton DJ, Ibrahim YM, Moore RJ, Lee CG, Pedersen C, Orwoll E, Smith RD, Burnum-Johnson KE, Baker ES (2017) Comparing identified and statistically significant lipids and polar metabolites in 15-year old serum and dried blood spot samples for longitudinal studies. Rapid Commun Mass Spectrom 31:447–456.  https://doi.org/10.1002/rcm.7808CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Burnum-Johnson KE, Baker ES, Metz TO (2017) Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging. Placenta.  https://doi.org/10.1016/j.placenta.2017.03.016CrossRefGoogle Scholar
  26. 26.
    Groessl M, Graf S, Knochenmuss R (2015) High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140:6904–6911.  https://doi.org/10.1039/C5AN00838GCrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fenn LS, McLean JA (2013) Structural separations by ion mobility-MS for glycomics and glycoproteomics. Methods Mol Biol 951:171–194.  https://doi.org/10.1007/978-1-62703-146-2_12CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Metz TO, Baker ES, Schymanski EL, Renslow RS, Thomas DG, Causon TJ, Webb IK, Hann S, Smith RD, Teeguarden J (2017) Integrating ion mobility spectrometry into MS-based exposome measurements: what can it add and how far can it go? Bioanalysis 9:81–98.  https://doi.org/10.4155/bio-2016-0244CrossRefPubMedGoogle Scholar
  29. 29.
    Zheng X, Dupuis KT, Aly NA, Zhou Y, Smith FB, Tang K, Smith RD, Baker ES (2018) Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta 1037:265–273.  https://doi.org/10.1016/j.aca.2018.02.054CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    T. Causon, V. Ivanova-Petropulos, D. Petrusheva, E. Bogeva, S. Hann, Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry, Anal Chim Acta (n.d.) in pressGoogle Scholar
  31. 31.
    Mairinger T, Causon TJ, Hann S (2018) The potential of ion mobility–mass spectrometry for non-targeted metabolomics. Curr Opin Chem Biol 42:9–15.  https://doi.org/10.1016/j.cbpa.2017.10.015CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng X, Aly NA, Zhou Y, Dupuis KT, Bilbao A, Paurus VL, Orton DJ, Wilson R, Payne SH, Smith RD, Baker ES (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8:7724–7736.  https://doi.org/10.1039/C7SC03464DCrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Baker ES, Smith RD, McLean JA, Hann S, Fjeldsted JC (2017) An Interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Anal Chem 89:9048–9055.  https://doi.org/10.1021/acs.analchem.7b01729CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nichols CM, Dodds JN, Rose B, Picache JA, Morris CB, Codreanu SG, May JC, Sherrod SD, McLean JA (2018) Untargeted molecular discovery in primary metabolism: collision cross section as a molecular descriptor in ion mobility-mass spectrometry. Anal Chem.  https://doi.org/10.1021/acs.analchem.8b04322CrossRefGoogle Scholar
  35. 35.
    Causon TJ, Hann S (2015) Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry. J Chromatogr A 1416:47–56.  https://doi.org/10.1016/j.chroma.2015.09.009CrossRefPubMedGoogle Scholar
  36. 36.
    Dodds JN, May JC, McLean JA (2017) Investigation of the complete suite of the leucine and isoleucine isomers: toward prediction of ion mobility separation capabilities. Anal Chem 89:952–959.  https://doi.org/10.1021/acs.analchem.6b04171CrossRefPubMedGoogle Scholar
  37. 37.
    Tim J. Causon, Le Si-Hung, Kenneth Newton, Ruwan T. Kurulugama, John Fjeldsted, Stephan Hann, (2019) Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics. Analytical and Bioanalytical Chemistry 411 (24):6265–6274CrossRefGoogle Scholar
  38. 38.
    Taylor CF, Paton NW, Lilley KS, Binz P-A, Julian RK Jr, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates Iii JR, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893.  https://doi.org/10.1038/nbt1329CrossRefPubMedGoogle Scholar
  39. 39.
    Liebisch G, Ekroos K, Hermansson M, Ejsing CS (2017) Reporting of lipidomics data should be standardized. Biochim Biophys Acta 1862:747–751.  https://doi.org/10.1016/j.bbalip.2017.02.013CrossRefGoogle Scholar
  40. 40.
    Burla B, Arita M, Arita M, Bendt AK, Cazenave-Gassiot A, Dennis EA, Ekroos K, Han X, Ikeda K, Liebisch G, Lin MK, Loh TP, Meikle PJ, Orešič M, Quehenberger O, Shevchenko A, Torta F, Wakelam MJO, Wheelock CE, Wenk MR (2018) MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J Lipid Res 59:2001–2017.  https://doi.org/10.1194/jlr.S087163CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB (2018) Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14:72.  https://doi.org/10.1007/s11306-018-1367-3CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Blaženović I, Shen T, Mehta SS, Kind T, Ji J, Piparo M, Cacciola F, Mondello L, Fiehn O (2018) Increasing compound identification rates in untargeted lipidomics research with liquid chromatography drift time–ion mobility mass spectrometry. Anal Chem 90:10758–10764.  https://doi.org/10.1021/acs.analchem.8b01527CrossRefPubMedGoogle Scholar
  43. 43.
    MacLean BX, Pratt BS, Egertson JD, MacCoss MJ, Smith RD, Baker ES (2018) Using skyline to analyze data-containing liquid chromatography, ion mobility spectrometry, and mass spectrometry dimensions. J Am Soc Mass Spectrom 29:2182–2188.  https://doi.org/10.1007/s13361-018-2028-5CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JLP, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano IDG, Causon T, Clowers BH, Creaser CS, Pauw ED, Far J, Fernandez-Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom Rev. 38:291–320.  https://doi.org/10.1002/mas.21585CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Tim J. Causon
    • 1
    Email author
  • Ruwan T. Kurulugama
    • 2
  • Stephan Hann
    • 1
  1. 1.Institute of Analytical ChemistryUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
  2. 2.Agilent TechnologiesSanta ClaraUSA

Personalised recommendations