Advertisement

Collision Cross Section Calculations Using HPCCS

  • Gabriel Heerdt
  • Leandro Zanotto
  • Paulo C. T. Souza
  • Guido Araujo
  • Munir S. SkafEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2084)

Abstract

A technical overview of the High Performance Collision Cross Section (HPCCS) software for accurate and efficient calculations of collision cross sections for molecular ions ranging from small organic molecules to large protein complexes is presented. The program uses helium or nitrogen as buffer gas with considerable gains in computer time compared to publicly available codes under the Trajectory Method approximation. HPCCS is freely available under the Academic Use License at https://github.com/cepid-cces/hpccs.

Key words

Ion mobility Mass spectrometry Collision cross section HPCCS Trajectory method 

Notes

Acknowledgments

This work was supported by a grant from the Sao Paulo State Research Foundation—Fapesp (Grant #2013/08293-7). Partial support from the Brazilian Research Council—CNPq is also acknowledged.

References

  1. 1.
    Mulder AA, Filatov M (2010) NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. Chem Soc Rev 395:578–590CrossRefGoogle Scholar
  2. 2.
    Egli M (2016) Diffraction techniques in structural biology. Curr Protoc Nucleic Acid Chem 65:7.13.1–7.13.41CrossRefGoogle Scholar
  3. 3.
    Peters JP, Kowal EA, Pallan PS, Egli M, Maher LJ 3rd (2018) Comparative analysis of inosine-substituted duplex DNA by circular dichroism and X-ray crystallography. J Biomol Struct Dyn 36:2753–2772CrossRefGoogle Scholar
  4. 4.
    Christensen AS (2010) Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions. Dissertation, University of Copenhagen; arXiv:1508.00808v1 [physics.chem-ph]
  5. 5.
    Abola E, Kuhn P, Earnest T, Stevens RC (2000) Automation of X-ray crystallography. Nat Struct Biol 7:973–977CrossRefGoogle Scholar
  6. 6.
    Schneidman-Duhovny D, Rossi A, Avila-Sakar A et al (2012) A method for integrative structure determination of protein-protein complexes. Bioinformatics 28:3282–3289CrossRefGoogle Scholar
  7. 7.
    Fenn JB (2003) Electrospray wings for molecular elephants (Nobel lecture). Angew Chem Int Ed 42:3871–3894CrossRefGoogle Scholar
  8. 8.
    Wyttenbach T, Bowers MT (2011) Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. J Phys Chem B 115:12266–12275CrossRefGoogle Scholar
  9. 9.
    Mikhailov VA, Mize TH, Benesch JLP, Robinson CV (2014) Mass-selective soft-landing of protein assemblies with controlled landing energies. Anal Chem 86:8321–8328CrossRefGoogle Scholar
  10. 10.
    Liu L, Bagal D, Kitova EN, Schnier PD, Klassen JS (2009) Hydrophobic protein−ligand interactions preserved in the gas phase. J Am Chem Soc 131:15980–15981CrossRefGoogle Scholar
  11. 11.
    Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82:9557–9565CrossRefGoogle Scholar
  12. 12.
    Benesch JLP, Ruotolo BT, Simmons DA, Robinson CV (2007) Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 107:3544–3567CrossRefGoogle Scholar
  13. 13.
    Valentine SJ, Counterman AE, Clemmer DE (1997) Conformer-dependent proton-transfer reactions of ubiquitin ions. J Am Soc Mass Spectrom 8:954–961CrossRefGoogle Scholar
  14. 14.
    Shelimov KB, Clemmer DE, Hudgins RR, Jarrold MF (1997) Protein structure in vacuo: gas-phase conformations of BPTI and cytochrome c. J Am Chem Soc 119:2240–2248CrossRefGoogle Scholar
  15. 15.
    Shelimov KB, Jarrold MF (1997) Conformations, unfolding, and refolding of apomyoglobin in vacuum: an activation barrier for gas-phase protein folding. J Am Chem Soc 119:2987–2994CrossRefGoogle Scholar
  16. 16.
    Shvartsburgc AA, Jarrold MF (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett 261:86–91CrossRefGoogle Scholar
  17. 17.
    Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) Structural information from ion mobility measurements: effects of the long range potential. J Phys Chem 100:16082–16086; Erratum (1997) J Phys Chem A101:968CrossRefGoogle Scholar
  18. 18.
    Wyttenbach T, von Helden G, Batka JJ, Carlat D, Bowers MT (1997) Effect of the long-range potential on ion mobility measurements. J Am Soc Mass Spectrom 8:275–282CrossRefGoogle Scholar
  19. 19.
    Shvartsburg AA, Smith RD (2008) Optimum waveforms for differential ion mobility spectrometry (FAIMS). J Am Soc Mass Spectrom 19:1286–1295CrossRefGoogle Scholar
  20. 20.
    Lanucara F, Holman SW, Gray CJ, Eyers CE (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6:281–294CrossRefGoogle Scholar
  21. 21.
    Bleiholder C, Wyttenbach T, Bowers MT (2011) A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I) Method. Int J Mass Spectrom 308:1–10CrossRefGoogle Scholar
  22. 22.
    Zanotto L, Heerdt G, Souza PCT, Araujo G, Skaf MS (2018) High performance collision cross section calculation – HPCCS. J Comput Chem 39:1675–1681CrossRefGoogle Scholar
  23. 23.
    Shvartsburg AA, Schatz GC, Jarrold MF (1998) Mobilities of carbon cluster ions: critical importance of the molecular attractive potential. J Chem Phys 108:2416–2423CrossRefGoogle Scholar
  24. 24.
    Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, Kim HI (2012) Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem 84:1026–1033CrossRefGoogle Scholar
  25. 25.
    Pacheco P (2010) An introduction to parallel programming. Morgan Kaufmann, MAGoogle Scholar
  26. 26.
    Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8:3–30CrossRefGoogle Scholar
  27. 27.
    Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667CrossRefGoogle Scholar
  28. 28.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  29. 29.
    Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:W537–W541CrossRefGoogle Scholar
  30. 30.
    Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371CrossRefGoogle Scholar
  31. 31.
    Rubinstein RY, Kroese DP (2007) Simulation and the Monte Carlo method. Wiley series in probability and statistics. John Wiley & Sons, Inc., HobokenCrossRefGoogle Scholar
  32. 32.
    Wolfe M (1996) High performance compilers for parallel computing. Addison-Wesley Longman Publishing Co., Inc., BostonGoogle Scholar
  33. 33.
    Dagum L, Menon R (1998) OpenMP: an industry-standard API for shared-memory programming. IEEE Comput Sci Eng 5:46–55CrossRefGoogle Scholar
  34. 34.
    Marowka A (2011) On performance analysis of a multithreaded application parallelized by different programming models using Intel VTune. In: 11th international conference on parallel computing technologies PaCT: parallel computing technologies, pp 317–331Google Scholar
  35. 35.
    Jeffers J, Reinders J (2013) Intel Xeon phi coprocessor high performance programming. Morgan Kaufmann, WalthamGoogle Scholar
  36. 36.
    Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36:996–1007CrossRefGoogle Scholar
  37. 37.
    Marr DT, Binns F, Hill DL, Hinton G, Koufaty DA, Miller JA, Upton M (2002) Hyper-threading technology architecture and microarchitecture. Intel Technol J 6(1):4–15Google Scholar
  38. 38.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CTGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Gabriel Heerdt
    • 1
    • 2
  • Leandro Zanotto
    • 1
  • Paulo C. T. Souza
    • 1
    • 3
  • Guido Araujo
    • 4
  • Munir S. Skaf
    • 1
    Email author
  1. 1.Center for Computing in Engineering and Sciences, Institute of ChemistryUniversity of CampinasCampinasBrazil
  2. 2.Departamento de Química, Instituto de Ciências ExatasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Faculty of Mathematics and Natural SciencesUniversity of GroningenGroningenThe Netherlands
  4. 4.Center for Computing in Engineering and Sciences, Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations