Matrix-Assisted Laser Desorption and Desorption Electrospray Ionization Mass Spectrometry Coupled to Ion Mobility

  • James I. LangridgeEmail author
  • Emmanuelle Claude
Part of the Methods in Molecular Biology book series (MIMB, volume 2084)


Matrix-Assisted Laser Desorption Ionization (MALDI) and Desorption Electrospray Ionization (DESI) are two complementary ionization techniques that have transformed the field of biomolecular analysis, enabling the measurement of a wide range of biomolecules by mass spectrometry. These techniques have also been applied to imaging mass spectrometry where the spatial localization of molecules is determined. Coupling this with Ion Mobility Spectrometry (IM) allows an additional level of separation and specificity to be obtained. Here, we describe the coupling of the technologies and the practical advantages of these combinations, highlighting specific examples.

Key words

MALDI DESI Ion mobility Mass spectrometry Imaging MS 


  1. 1.
    Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63(24):1193A–1203ACrossRefGoogle Scholar
  2. 2.
    Yamashita M, Fenn JB (1984) Electrospray ion source. Another variation on the free-jet theme. J Phys Chem 88(20):4451–4459CrossRefGoogle Scholar
  3. 3.
    Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90(11):5011–5015CrossRefGoogle Scholar
  4. 4.
    Cain TC, Lubman DM, Weber WJ Jr (1994) Differentiation of bacteria using protein profiles from matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 8:1026–1030CrossRefGoogle Scholar
  5. 5.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751CrossRefGoogle Scholar
  6. 6.
    Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473CrossRefGoogle Scholar
  7. 7.
    Ifa DR, Wiseman JM, Song QY, Cooks RG (2007) Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom 259:8–15CrossRefGoogle Scholar
  8. 8.
    Kallback P, Shariatgorji M, Nilsson A, Andren PE (2012) Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J Proteome 75:4941–4951CrossRefGoogle Scholar
  9. 9.
    Chaurand P, Schwartz SA, Caprioli RM (2002) Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections. Curr Opin Chem Biol 6:676–681CrossRefGoogle Scholar
  10. 10.
    Goodwin RJ, Mackay CL, Nilsson A, Harrison DJ, Farde L, Andren PE et al (2011) Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal Chem 83:9694–9701CrossRefGoogle Scholar
  11. 11.
    Ibrahim YM, Prior DC, Baker ES, Smith RD, Belov ME (2010) Characterization of an ion mobility-multiplexed collision induced dissociation-tandem time-of-flight mass spectrometry approach. Int J Mass Spectrom 293(1–3):34–44CrossRefGoogle Scholar
  12. 12.
    Rodriguez-Suarez E, Hughes C, Gethings L, Giles K, Wildgoose J, Stapels M, Fadgen K, Geromanos S,Vissers JPC, Elortza F, Langridge JI (2013) An Ion Mobility Assisted Data Independent LC-MS Strategy for the Analysis of Complex Biological Samples. Current Analytical Chemistry 9(2):199–211.Google Scholar
  13. 13.
    Vakhrushev SY, Langridge J, Campuzano I, Hughes C, Peter-Katalinić J (2008) Ion mobility mass spectrometry analysis of human glycourinome. Anal Chem 80(7):2506–2513CrossRefGoogle Scholar
  14. 14.
    Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldórsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86(8):3985–3993CrossRefGoogle Scholar
  15. 15.
    May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87(3):1422–1143CrossRefGoogle Scholar
  16. 16.
    Ewing MA, Glover MS, Clemmer DE (2016) Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A 1439:3–25CrossRefGoogle Scholar
  17. 17.
    Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens J (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/OA-ToF instrument. Int J Mass Spectrom 261:1–12CrossRefGoogle Scholar
  18. 18.
    Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18(20):2401–2414CrossRefGoogle Scholar
  19. 19.
    Powers TW, Neely BA, Shao Y, Tang H, Troyer DA, Mehta AS, Haab BB, Drake RR (2014) MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One 9:9Google Scholar
  20. 20.
    Nelson KA, Daniels GJ, Fournie JW, Hemmer MJ (2013) Optimization of whole-body zebrafish sectioning methods for mass spectrometry imaging. J Biomol Tech 24(3):119–127CrossRefGoogle Scholar
  21. 21.
    Shariatgorji M, Svenningsson P, Andrén PE (2014) Mass spectrometry imaging, an emerging technology in neuropsychopharmacology. Neuropsychopharmacology 39:34–49CrossRefGoogle Scholar
  22. 22.
    Djidja MC, Francese S, Loadman PM, Sutton CW, Scriven P, Claude E, Snel MF, Franck J, Salzet M, Clench MR (2009) Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics 9(10):2750–2763CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Waters CorporationWilmslowUK

Personalised recommendations