Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules

  • Caleb B. Morris
  • James C. Poland
  • Jody C. May
  • John A. McLeanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2084)


Ion mobility-mass spectrometry (IM-MS) combines complementary size- and mass-selective separations into a single analytical platform. This chapter provides context for both the instrumental arrangements and key application areas that are commonly encountered in bioanalytical settings. New advances in these high-throughput strategies are described with description of complementary informatics tools to effectively utilize these data-intensive measurements. Rapid separations such as these are especially important in systems, synthetic, and chemical biology in which many small molecules are transient and correspond to various biological classes for integrated omics measurements. This chapter highlights the fundamentals of IM-MS and its applications toward biomolecular separations and discusses methods currently being used in the fields of proteomics, lipidomics, and metabolomics.

Key words

Ion mobility Ion mobility-mass spectrometry Biomolecules Omics 



This work was supported in part using the resources of the Center for Innovative Technology at Vanderbilt University. The authors gratefully acknowledge financial support for this work provided by the National Institutes of Health (NIH NIGMS R01GM092218 and NCI R03CA222452) and the U.S. Environmental Protection Agency under Assistance Agreement No. 83573601. This work has not been formally reviewed by the EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the funding agencies and organizations. The U.S. Government does not endorse any products or commercial services mentioned in this publication.


  1. 1.
    Thomson JJ, Rutherford E (1896) On the passage of electricity through gases exposed to Roentgen rays. Phil Mag Ser 5 42(258):392–407CrossRefGoogle Scholar
  2. 2.
    Tyndall AM, Powell CF (1930) The mobility of ions in pure gases. Proc R Soc Lond Ser A 129(809):162–180CrossRefGoogle Scholar
  3. 3.
    Tyndall AM, Starr LH, Powell CF (1928) The mobility of ions in air. Part IV. Investigations by two new methods. Proc R Soc Lond Ser A 121(787):172–184CrossRefGoogle Scholar
  4. 4.
    Barnes WS, Martin DW, McDaniel EW (1961) Mass spectrographic identification of the ion observed in hydrogen mobility experiments. Phys Rev Lett 6(3):110–111CrossRefGoogle Scholar
  5. 5.
    May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87(3):1422–1436PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968) Molecular beams of macroions. J Chem Phys 49(5):2240–2249CrossRefGoogle Scholar
  7. 7.
    Dole M, Hines RL, Mack LL, Mobley RC, Ferguson LD, Alice MB (1968) Gas phase macroions. Macromolecules 1(1):96–97CrossRefGoogle Scholar
  8. 8.
    Lubman DM, Kronick MN (1982) Plasma chromatography with laser-produced ions. Anal Chem 54(9):1546–1551CrossRefGoogle Scholar
  9. 9.
    von Helden G, Wyttenbach T, Bowers MT (1995) Inclusion of a MALDI ion source in the ion chromatography technique: conformational information on polymer and biomolecular ions. Int J Mass Spectrom Ion Process 146-147:349–364CrossRefGoogle Scholar
  10. 10.
    Wittmer D, Chen YH, Luckenbill BK, Hill HH Jr (1994) Electrospray ionization ion mobility spectrometry. Anal Chem 66(14):2348–2355CrossRefGoogle Scholar
  11. 11.
    Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32(6):577–592CrossRefGoogle Scholar
  12. 12.
    Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE (1998) Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal Chem 70(11):2236–2242PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Henderson SC, Valentine SJ, Counterman AE, Clemmer DE (1999) ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Anal Chem 71(2):291–301PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gillig KJ, Ruotolo B, Stone EG, Russell DH, Fuhrer K, Gonin M, Schultz AJ (2000) Coupling high-pressure MALDI with ion mobility/orthogonal time-of-flight mass spectrometry. Anal Chem 72(17):3965–3971PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Smith RD, Loo JA, Loo RRO, Busman M, Udseth HR (1991) Principles and practice of electrospray ionization–mass spectrometry for large polypeptides and proteins. Mass Spectrom Rev 10(5):359–452CrossRefGoogle Scholar
  16. 16.
    May JC, Morris CB, McLean JA (2017) Ion mobility collision cross section compendium. Anal Chem 89(2):1032–1044CrossRefGoogle Scholar
  17. 17.
    Giles K, Williams JP, Campuzano I (2011) Enhancements in travelling wave ion mobility resolution. Rapid Commun Mass Spectrom 25(11):1559–1566CrossRefGoogle Scholar
  18. 18.
    Giles K, Pringle SD, Worthington KR, Little DLW, Bateman RH (2004) Applications of a traveling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18(20):2401–2414CrossRefGoogle Scholar
  19. 19.
    Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261(1):1–12CrossRefGoogle Scholar
  20. 20.
    May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, Mordehai A, Klein C, Barry W, Darland E, Overney G, Imatani K, Stafford GC, Fjeldsted JC, McLean JA (2014) Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem 86(4):2107–2116PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Silveira JA, Ridgeway ME, Park MA (2014) High resolution trapped ion mobility spectrometry of peptides. Anal Chem 86(12):5624–5627PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zhang F, Guo S, Zhang MY, Zhang ZX, Guo YL (2015) Characterizing ion mobility and collision cross section of fatty acids using electrospray ion mobility mass spectrometry. J Mass Spectrom 50(7):906–913PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kurulugama RT, Darland E, Kuhlmann F, Stafford G, Fjeldsted J (2015) Evaluation of drift gas selection in complex sample analyses using a high performance drift tube ion mobility-QTOF mass spectrometer. Analyst 14(20):6834–6844CrossRefGoogle Scholar
  24. 24.
    Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldorsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86(8):3985–3993PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Allen SJ, Schwartz AM, Bush MF (2013) Effects of polarity on the structures and charge states of native-like proteins and protein complexes in the gas phase. Anal Chem 85(24):12055–12061PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, Kim HI (2012) Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem 84(2):1026–1033CrossRefGoogle Scholar
  27. 27.
    Bush MF, Campuzano IDG, Robinson CV (2012) Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem 84(16):7124–7130PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Shah AR, Agarwal K, Baker ES, Singhal M, Mayampurath AM, Ibrahim YM, Kangas LJ, Monroe ME, Zhao R, Belov ME, Anderson GA, Smith RD (2010) Machine learning based prediction for peptide drift times in ion mobility spectrometry. Bioinformatics 26(13):1601–1607PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    McLean JA (2009) The mass-mobility correlation redux: the conformational landscape of anhydrous biomolecules. J Am Soc Mass Spectrom 20(10):1775–1781PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Fenn LS, McLean JA (2008) Biomolecular structural separations by ion-mobility-mass spectrometry. Anal Bioanal Chem 391(3):905–909CrossRefGoogle Scholar
  31. 31.
    Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA (2009) Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 394(1):235–244PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hines KM, May JC, McLean JA, Xu LB (2016) Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem 88(14):7329–7336PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Leaptrot KL, May JC, Dodds JN, McLean JA (2019) Ion mobility conformational lipid atlas for high confidence lipidomics. Nat Commun 10(1):985PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Baker ES, Burnum-Johnson KE, Jacobs JM, Diamond DL, Brown RN, Ibrahim YM, Orton DJ, Piehowski PD, Purdy DE, Moore RJ, Danielson WF, Monroe ME, Crowell KL, Slysz GW, Gritsenko MA, Sandoval JD, LaMarche BL, Matzke MM, Webb-Robertson B-JM, Simons BC, McMahon BJ, Bhattacharya R, Perkins JD, Carithers RL, Strom S, Self SG, Katze MG, Anderson GA, Smith RD (2014) Advancing the high throughput identification of liver fibrosis protein signatures using multiplexed ion mobility spectrometry. Mol Cell Proteomics 13(4):1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Liu X, Plasencia M, Ragg S, Valentine SJ, Clemmer DE (2004) Development of high throughput dispersive LC-ion mobility-TOFMS techniques for analysing the human plasma proteome. Brief Funct Genomics Proteomics 3(2):177–186CrossRefGoogle Scholar
  36. 36.
    Poad BLJ, Zheng XY, Mitchell TW, Smith RD, Baker ES, Blanksby SJ (2018) Online ozonolysis combined with ion mobility-mass spectrometry provides a new platform for lipid isomer analyses. Anal Chem 90(2):1292–1300PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Harris RA, May JC, Stinson CA, Xia Y, McLean JA (2018) Determining double bond position in lipids using online ozonolysis coupled to liquid chromatography and ion mobility-mass spectrometry. Anal Chem 90(3):1915–1924PubMedCrossRefGoogle Scholar
  38. 38.
    Valentine SJ, Counterman AE, Clemmer DE (1999) A database of 660 peptide ion cross sections: use of intrinsic size parameters for bona fide predictions of cross sections. J Am Soc Mass Spectrom 10(11):1188–1211PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tao L, McLean JR, McLean JA, Russell DH (2007) A collision cross-section database of singly-charged peptide ions. J Am Soc Mass Spectrom 18(9):1727–1728CrossRefGoogle Scholar
  40. 40.
    Dilger JM, Valentine SJ, Glover MS, Ewing MA, Clemmer DE (2012) A database of alkali metal-containing peptide cross sections: influence of metals on size parameters for specific amino acids. Int J Mass Spectrom 330–332:35–45CrossRefGoogle Scholar
  41. 41.
    Dilger JM, Valentine SJ, Glover MS, Clemmer DE (2013) A database of alkaline-earth-coordinated peptide cross sections: insight into general aspects of structure. J Am Soc Mass Spectrom 24(5):768–779PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ, Thompson JW, Menikarachchi L, Lai S, Walsh C, Moseley A, Plumb RS, Grant DF, Palsson BO, Langridge J, Geromanos S, Astarite G (2015) Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87(2):1137–1144CrossRefGoogle Scholar
  43. 43.
    Picache JA, Rose BS, Balinski A, Leaptrot KL, Sherrod SD, May JC, McLean JA (2019) Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci 10(4):983–993CrossRefGoogle Scholar
  44. 44.
    Ellis HW, Thackston MG, McDaniel EW, Mason EA (1984) Transport properties of gaseous ions over a wide energy range. Part III. At Data Nucl Data Tables 31(1):113–151CrossRefGoogle Scholar
  45. 45.
    Deng LL, Ibrahim YM, Baker ES, Aly NA, Hamid AM, Zhang X, Zheng XY, Garimella SVB, Webb IK, Prost SA, Sandoval JA, Norheim RV, Anderson GA, Tolmachev AV, Smith RD (2016) Ion mobility separations of isomers based upon long path length structures for lossless ion manipulations combined with mass spectrometry. Chem Select 1(10):2396–2399Google Scholar
  46. 46.
    Dodds JN, May JC, McLean JA (2017) Investigation of the complete suite of the leucine and isoleucine isomers: toward prediction of ion mobility separation capabilities. Anal Chem 89(1):952–959PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Dwivedi P, Bendiak B, Clowers BH, Hill HH Jr (2007) Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). J Am Soc Mass Spectrom 18(7):1163–1175PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Fenn LS, McLean JA (2011) Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys Chem Chem Phys 13(6):2196–2205PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Groessl M, Graf S, Knochenmuss R (2015) High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 14(20):6904–6911CrossRefGoogle Scholar
  50. 50.
    Lalli PM, Corilo YE, Fasciotti M, Riccio MF, de Sa GF, Daroda RJ, Souza GHMF, McCullagh M, Bartberger MD, Eberlin MN, Campuzano IDG (2013) Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution. J Mass Spectrom 48(9):989–997PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Valentine SJ, Kulchania M, Barnes CAS, Clemmer DE (2001) Multidimensional separations of complex peptide mixtures: a combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach. Int J Mass Spectrom 212(1–3):97–109CrossRefGoogle Scholar
  52. 52.
    Matz LM, Dion HM, Hill HH Jr (2002) Evaluation of capillary liquid chromatography–electrospray ionization ion mobility spectrometry with mass spectrometry detection. J Chromatogr A 946(1–2):59–68PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lareau NM, May JC, McLean JA (2015) Non-derivatized glycan analysis by reverse phase liquid chromatography and ion mobility-mass spectrometry. Analyst 140(10):3335–3338PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Nichols CM, May JC, Sherrod SD, McLean JA (2018) Automated flow injection method for the high precision determination of drift tube ion mobility collision cross sections. Analyst 143(7):1556–1559PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gerhardt N, Schwolow S, Rohn S, Perez-Cacho PR, Galan-Soldevilla H, Arce L, Weller P (2019) Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: comparison of different processing approaches by LDA, kNN, and SVM. Food Chem 278:720–728PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Donato P, Giuffrida D, Oteri M, Inferrera V, Dugo P, Mondello L (2018) Supercritical fluid chromatography x ultra-high pressure liquid chromatography for red chilli pepper fingerprinting by photodiode array, quadrupole-time-of-flight and ion mobility mass spectrometry (SFC x RP-UHPLC-PDA-Q-ToF MS-IMS). Food Anal Methods 11(12):3331–3341CrossRefGoogle Scholar
  57. 57.
    Hill HH, Stlouis RH, Morrissey MA, Shumate CB, Siems WF, McMinn DG (1992) A detection method for unified chromatography-ion mobility monitoring. J High Resol Chromatogr 15(7):417–422CrossRefGoogle Scholar
  58. 58.
    Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63(24):1193A–1203APubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Karas M, Bahr U, Gießmann U (1991) Matrix-assisted laser desorption ionization mass spectrometry. Mass Spectrom Rev 10(5):335–357CrossRefGoogle Scholar
  60. 60.
    Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7(4):493PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    McLean JA, Ridenour WB, Caprioli RM (2007) Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J Mass Spectrom 42(8):1099–1105PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Jackson SN, Ugarov M, Egan T, Post JD, Langlais D, Albert Schultz J, Woods AS (2007) MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom 42(8):1093–1098PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1990) Electrospray ionization–principles and practice. Mass Spectrom Rev 9(1):37–70CrossRefGoogle Scholar
  66. 66.
    Belov ME, Gorshkov MV, Udseth HR, Anderson GA, Smith RD (2000) Zeptomole-sensitivity electrospray ionization−fourier transform ion cyclotron resonance mass spectrometry of proteins. Anal Chem 72(10):2271–2279PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Hardman M, Makarov AA (2003) Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal Chem 75(7):1699–1705PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tang XJ, Thibault P, Boyd RK (1993) Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Anal Chem 65(20):2824–2834PubMedCrossRefGoogle Scholar
  69. 69.
    Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120(13):3265–3266CrossRefGoogle Scholar
  70. 70.
    Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci 101(26):9528–9533PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Dodds JN, May JC, McLean JA (2017) Correlating resolving power, resolution, and collision cross section: unifying cross-platform assessment of separation efficiency in ion mobility spectrometry. Anal Chem 89(22):12176–12184PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mason EA, McDaniel EW (1988) Transport properties of ions in gases. John Wiley & Sons, New York, NY, p 560CrossRefGoogle Scholar
  73. 73.
    Siems WF, Viehland LA, Hill HH Jr (2012) Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation. Anal Chem 84(22):9782–9791PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82(22):9557–9565PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Deng LL, Ibrahim YM, Hamid AM, Garimella SVB, Webb IK, Zheng XY, Prost SA, Sandoval JA, Norheim RV, Anderson GA, Tolmachev AV, Baker ES, Smith RD (2016) Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Anal Chem 88(18):8957–8964PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    May JC, McLean JA (2016) Advanced multidimensional separations in mass spectrometry: navigating the big data deluge. Ann Rev Anal Chem 9:387–409CrossRefGoogle Scholar
  77. 77.
    May JC, Goodwin CR, McLean JA (2011) Gas-phase ion mobility-mass spectrometry (IM-MS) and tandem IM-MS/MS strategies for metabolism studies and metabolomics. Encyclopedia Drug Metab Interact.
  78. 78.
    Kolli V, Schumacher KN, Dodds ED (2017) Ion mobility-resolved collision-induced dissociation and electron transfer dissociation of N-glycopeptides: gathering orthogonal connectivity information from a single mass-selected precursor ion population. Analyst 142(24):4691–4702PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lermyte F, Verschueren T, Brown JM, Williams JP, Valkenborg D, Sobott F (2015) Characterization of top-down ETD in a travelling-wave ion guide. Methods 89:22–29PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Williams JP, Pringle S, Richardson K, Gethings L, Vissers JPC, De Cecco M, Houel S, Chakraborty AB, Yu YQ, Chen WB, Brown JM (2013) Characterisation of glycoproteins using a quadrupole time-of-flight mass spectrometer configured for electron transfer dissociation. Rapid Commun Mass Spectrom 27(21):2383–2390PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ruotolo BL, Benesch JLP, Sandercock AM, Hyung S, Robinson C (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152CrossRefGoogle Scholar
  82. 82.
    McLean JA, Ruotolo BT, Gillig KJ, Russel DH (2005) Ion mobility-mass spectrometry: a new paradigm for proteomics. Int J Mass Spectrom 240(3):301–315CrossRefGoogle Scholar
  83. 83.
    Paglia G, Astarita G (2017) Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc 12:797–813CrossRefGoogle Scholar
  84. 84.
    Zhang X, Quinn K, Cruickshank-Quinn C, Reisdorph R, Reisdorph N (2018) The application of ion mobility mass spectrometry to metabolomics. Curr Opin Chem Biol 42:60–66PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    May JC, Goodwin CR, McLean JA (2015) Ion mobility mass spectrometry strategies for untargeted systems, synthetic, and chemical biology. Curr Opin Biotechnol 31:117–121PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, The Human Serum Metabolome Consortium (2011) Procedures for large-scale metabolic profiling of seruma and plasma using gas chromatography and liquid chromatraphy coupled to mass spectrometry. Nat Protoc 6:1060–1083PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hoaglund-Hyzer CS, Li J, Clemmer DE (2000) Mobility labeling for parallel CID of ion mixtures. Anal Chem 72(13):2737–2740PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Taguchi F, Solomon B, Gregorc V, Roder H, Gray R, Kashara K, Nisho M, Brahmer J, Spreafico A, Ludovini V, Massion PP, Dziadziuszho R, Schiller J, Grigorieva J, Tsypin M, Hunsucker SW, Caprioli R, Duncan MW, Hirsch FR, Bunn PA, Carbone DP (2007) Mass spectrometry to classify non-small-lung cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J Natl Cancer Instit 99(11):838–846CrossRefGoogle Scholar
  89. 89.
    Mori H, Takio K, Ogawara M, Selkoe DJ (1992) Mass spectrometry of purified amyloid beta protein in Alzheimer’s disease. J Biochem Chem 267:17082–17086Google Scholar
  90. 90.
    Djidja MC, Francese S, Loadman PM, Sutton CW, Scriven P, Claude E, Snel MF, Franck J, Salzet M, Clench MR (2009) Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomics investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics 9(10):2750–2763PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Moon MH, Myung S, Plasencia M, Hilderbrand AE, Clemmer DE (2003) Nanoflow LC/Ion mobility/CID/TOF for proteomics: analysis of a human urinary proteome. J Proteome Res 2(6):589–597PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Thalassinos K, Grabenauer M, Slade SE, Hilton GR, Bowers MT, Scrivens JH (2009) Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal Chem 81(1):248–254PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zhong Y, Hyung S, Ruotolo BT (2012) Ion mobility-mass spectrometry for structual proteomics. Expert Rev Proteomics 9(1):47–58PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    May JC, McLean JA (2015) A uniform field ion mobility study of melittin and implications of low-field mobility for resolving fine cross-sectional detail in peptide and protein experiments. Proteomics 15(16):2862–2871PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Shliaha PV, Bond NJ, Gatto L, Liley KS (2013) Effects of traveling wave ion mobility separation of data independent acquistion in proteomics studies. J Proteome Res 12(6):2323–2339PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wang G, Abzalimov RR, Kaltashov IA (2011) Direct monitoring of heat-stressed biopolymers with temperature-controlled electrospray ionization mass spectrometry. Anal Chem 83(8):2870–2876PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    El-Baba TJ, Woodall DW, Raab SA, Fuller DR, Langanowsky A, Russell DH, Clemmer DE (2017) Melting Proteins: evidence for multiple stable structures upon thermal denaturation of native ubiquitin from ion mobility spectrometry-mass spectrometry measurements. J Am Chem Soc 139(18):6306–6309PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Han X, Yang K, Gross RW (2011) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analysis. Mass Spectrom Rev 31(1):134–178PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta 1811(11):935–945PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Paglia G, Kliman M, Claude E, Geromanos S, Astarita G (2015) Application of ion-mobility mass spectrometry forl lipids. Anal Bioanal Chem 407(17):4995–5007PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Grossel M, Graf S, Knochenmuss R (2015) High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140(20):6904–6911CrossRefGoogle Scholar
  102. 102.
    Di Giovanni JP, Barkley RM, Jones DNM, Hankins JA, Murphy RC (2018) Tandem mass spectrometry and ion mobility reveals structural insight into eicosanoid product ion formation. J Am Soc Mass Spectrom 29(6):1231–1241PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Paglia G, Shrestha B, Astarita G (2017) Ion-mobility mass spectrometry for lipidomics applications. In: Wood P (ed) Lipidomics. Humana, New York, NY, pp 61–79CrossRefGoogle Scholar
  104. 104.
    Thomas MC, Mitchell TW, Harman DG, Deeley JM, Murphy RC, Blanksby SJ (2007) Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry. Anal Chem 79(13):5013–5022PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sun C, Zhao Y, Curtis JM (2014) Elucidation of phosphatidylcholine isomers using two dimensional liquid chromatography coupled in-line with ozonolysis mass spectrometry. J Chromatogr A 1351:37–45PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhang X, Quinn K, Cruickshank-Quinn C, Reisdorph R, Reisdorph N (2018) Applications of ion mobility mass spectrometry to metabolomics. Curr Opin Chem Biol 42:60–66PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Sinclair E, Hollywood KA, Yan C, Blankley R, Rainer B, Barran P (2018) Mobilising ion mobility mass spectrometry for metabolomics. Analyst 19:4783–4788CrossRefGoogle Scholar
  109. 109.
    Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA (2016) Untargeted metabolomics strategies—challenges and emerging directions. J Am Soc Mass Spectrom 27(12):1897–1905PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    May JC, Gant-Branum RL, McLean JA (2016) Targeting the untargeted in molecular phenomics with structurally-selective ion mobility-mass spectrometry. Curr Opin Biotechnol 39:192–197PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Nichols CM, Dodds JN, Rose BS, Picache JA, Morris CB, Codreanu SG, May JC, Sherrod SD, McLean JA (2018) Untargeted molecular discovery in primary metabolism: collision cross section as a molecular descriptor in ion mobility-mass spectrometry. Anal Chem 90(24):14484–14492PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wickramasekara SI, Zandkarimi F, Morré J, Kirkwood J, Legette L, Jiang Y, Gombart AF, Stevens JF, Maier CS (2013) Electrospray quadrupole travelling wave ion mobility time-of-flight mass spectrometry for the detection of plasma metabolome changes caused by xanthohumol in obese zucker (fa/fa) rats. Meta 3:701–717Google Scholar
  113. 113.
    Stow MS, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Smith RD, McLean JA, Hann S, Fjeldsted JC (2017) An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal Chem 89(17):9048–9055PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Regueiro J, Negreira N, Berntssen MH (2016) Ion-mobility-derived collision cross section as an additional identification point for multiresidue screening of pesticides in fish feed. Anal Chem 88(22):11169–11177PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Stephan S, Hippler J, Köhler T, Deeb AA, Schmidt TC, Schmitz OJ (2016) Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+ LC-IM-qTOF-MS using a CCS database. Anal Bioanal Chem 408(24):6545–6555PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zheng X, Aly NA, Zhou Y, Dupuis KT, Bilbao A, Paurus VL, Orton DJ, Wilson R, Payne SH, Smith RD, Baker ES (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8(11):7724–7736PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hernández-Mesa M, Le Bizec B, Monteau F, García-Campaña AM, Dervilly-Pinel G (2018) Collision cross section (CCS) database: an additional measure to characterize steroids. Anal Chem 90(7):4616–4625CrossRefGoogle Scholar
  118. 118.
    Chen TC, Ibrahim YM, Webb IK, Garimella SVB, Zhang X, Hamid AM, Deng LL, Karnesky WE, Prost SA, Sandoval JA, Norheim RV, Anderson GA, Tolmachev AV, Baker ES, Smith RD (2016) Mobility-selected ion trapping and enrichment using structures for lossless ion manipulations. Anal Chem 88(3):1728–1733PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ibrahim YM, Hamid AM, Deng LL, Garimella SVB, Webb IK, Baker ES, Smith RD (2017) New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst 142(7):1010–1021PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zhang XY, Garimella SVB, Prost SA, Webb IK, Chen TC, Tang KQ, Tolmachev AV, Norheim RV, Baker ES, Anderson GA, Ibrahim YM, Smith RD (2015) Ion trapping, storage, and ejection in structures for lossless ion manipulations. Anal Chem 87(12):6010–6016PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chouinard CD, Nagy G, Webb IK, Shi TJ, Baker ES, Prost SA, Liu T, Ibrahim YM, Smith RD (2018) Improved sensitivity and separations for phosphopeptides using online liquid chromatography coupled with structures for lossless ion manipulations ion mobility-mass spectrometry. Anal Chem 90(18):10889–10896PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Garimella SVB, Ibrahim YM, Webb IK, Tolmachev AV, Zhang XY, Prost SA, Anderson GA, Smith RD (2014) Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM). J Am Soc Mass Spectrom 25(11):1890–1896PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Webb IK, Garimella SVB, Tolmachev AV, Chen TC, Zhang XY, Cox JT, Norheim RV, Prost SA, LaMarche B, Anderson GA, Ibrahim YM, Smith RD (2014) Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations. Anal Chem 86(19):9632–9637PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Deng LL, Webb IK, Garimella SVB, Hamid AM, Zheng XY, Norheim RV, Prost SA, Anderson GA, Sandoval JA, Baker ES, Ibrahim YM, Smith RD (2017) Serpentine ultralong path with extended routing (SUPER) high resolution traveling wave ion mobility-MS using structures for lossless ion manipulations. Anal Chem 89(8):4628–4634PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Garimella SVB, Ibrahim YM, Webb IK, Ipsen AB, Chen TC, Tolmachev AV, Baker ES, Anderson GA, Smith RD (2015) Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90 degrees turn and a switch. Analyst 14(20):6845–6852CrossRefGoogle Scholar
  126. 126.
    Fernandez-Lima FA, Kaplan DA, Suetering J, Park MA (2011) Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom 14(2–3):93–98CrossRefGoogle Scholar
  127. 127.
    Adams KJ, Montero D, Aga D, Fernandez-Lima F (2016) Isomer separation of polybrominated diphenyl ether metabolites using nanoESI-TIMS-MS. Int J Ion Mobil Spectrom 19(2–3):69–76PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Michelmann K, Silveira JA, Ridgeway ME, Park MA (2015) Fundamentals of trapped ion mobility spectrometry. J Am Soc Mass Spectrom 26(1):14–24PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hernandez DR, DeBord JD, Ridgeway ME, Kaplan DA, Park MA, Fernandez-Lima F (2014) Ion dynamics in a trapped ion mobility spectrometer. Analyst 139(8):1913–1921PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Silveira JA, Danielson W, Ridgeway ME, Park MA (2016) Altering the mobility-time continuum: nonlinear scan functions for targeted high resolution trapped ion mobility-mass spectrometry. Int J Ion Mobil Spectrom 19(2–3):87–94CrossRefGoogle Scholar
  131. 131.
    May JC, Leaptrot KL, Sundarapandian S, McLean JA. In theoretical evaluation and performance characterization of an 8-channel spatially multiplexed ion mobility-mass spectrometer, 60th annual ASMS conference on mass spectrometry and allied topics, Vancouver, BC, May 2012Google Scholar
  132. 132.
    Asbury GR, Hill HH (2000) Using different drift gases to change separation factors (alpha) in ion mobility spectrometry. Anal Chem 72(3):580–584PubMedCrossRefGoogle Scholar
  133. 133.
    Matz LM, Hill HH Jr, Beegle LW, Kanik I (2002) Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection. J Am Soc Mass Spectrom 13(4):300–307PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Berant Z, Karpas Z (1989) Mass-mobility correlation of ions in view of new mobility data. J Am Chem Soc 111(11):3819–3824CrossRefGoogle Scholar
  135. 135.
    Howdle MD, Eckers C, Laures AMF, Creaser CS (2010) The effect of drift gas on the separation of active pharmaceutical ingredients and impurities by ion mobility–mass spectrometry. Int J Mass Spectrom 298(1–3):72–77CrossRefGoogle Scholar
  136. 136.
    Purves RW, Ozog AR, Ambrose SJ, Prasad S, Belford M, Dunyach JJ (2014) Using gas modifiers to significantly improve sensitivity and selectivity in a cylindrical FAIMS device. J Am Soc Mass Spectrom 25(7):1274–1284PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Waraksa E, Perycz U, Namiesnik J, Sillanpaa M, Dymerski T, Wojtowicz M, Puton J (2016) Dopants and gas modifiers in ion mobility spectrometry. TRAC Trends Anal Chem 82:237–249CrossRefGoogle Scholar
  138. 138.
    Schneider BB, Covey TR, Nazarov EG (2013) Investigation of the chemical orthogonality effect of transport gas modifiers on DMS separations. Abstr Pap Am Chem Soc 246:1Google Scholar
  139. 139.
    Kafle A, Coy SL, Wong BM, Fornace AJ, Glick JJ, Vouros P (2014) Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J Am Soc Mass Spectrom 25(7):1098–1113PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Levin DS, Vouros P, Miller RA, Nazarov EG, Morris JC (2006) Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal Chem 78(1):96–106PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Porta T, Varesio E, Hopfgartner G (2013) Gas-phase separation of drugs and metabolites using modifier-assisted differential ion mobility spectrometry hyphenated to liquid extraction surface analysis and mass spectrometry. Anal Chem 85(24):11771–11779PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Fernandez-Maestre R, Wu C, Hill HH (2012) Buffer gas modifiers effect resolution in ion mobility spectrometry through selective ion-molecule clustering reactions. Rapid Commun Mass Spectrom 26(19):2211–2223PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Garabedian A, Leng FF, Ridgeway ME, Park MA, Fernandez-Lima F (2018) Tailoring peptide conformational space with organic gas modifiers in TIMS-MS. Int J Ion Mobil Spectrom 21(1–2):43–48CrossRefGoogle Scholar
  144. 144.
    Beegle LW, Kanik I, Matz L, Hill HH (2001) Electrospray ionization nigh-resolution ion mobility spectrometry for the detection of organic compounds, 1. Amino acids. Anal Chem 73(13):3028–3034PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Beegle LW, Kanik I, Matz L, Hill HH (2002) Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry. Int J Mass Spectrom 216(3):257–268CrossRefGoogle Scholar
  146. 146.
    Chouinard CD, Beekman CR, Kemperman RHJ, King HM, Yost RA (2017) Ion mobility-mass spectrometry separation of steroid structural isomers and epimers. Int J Ion Mobil Spectrom 20(1–2):31–39CrossRefGoogle Scholar
  147. 147.
    Fasciotti M, Lalli PM, Klitzke CF, Corilo YE, Pudenzi MA, Pereira RCL, Bastos W, Daroda RJ, Eberlin MN (2013) Petroleomics by traveling wave ion mobility–mass spectrometry using CO2 as a drift gas. Energy Fuel 27(12):7277–7286CrossRefGoogle Scholar
  148. 148.
    Fasciotti M, Sanvido GB, Santos VG, Lalli PM, McCullagh M, de Sá GF, Daroda RJ, Peter MG, Eberlin MN (2012) Separation of isomeric disaccharides by traveling wave ion mobility mass spectrometry using CO2 as drift gas. J Mass Spectrom 47(12):1643–1647PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Bataglion GA, Souza G, Heerdt G, Morgon NH, Dutra JDL, Freire RO, Eberlin MN, Tata A (2015) Separation of glycosidic catiomers by TWIM-MS using CO2 as a drift gas. J Mass Spectrom 50(2):336–343PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Ruotolo BT, McLean JA, Gillig KJ, Russell DH (2004) Peak capacity of ion mobility mass spectrometry: the utility of varying drift gas polarizability for the separation of tryptic peptides. J Mass Spectrom 39(4):361–367PubMedCrossRefGoogle Scholar
  151. 151.
    Jurneczko E, Kalapothakis J, Campuzano IDG, Morris M, Barran PE (2012) Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry. Anal Chem 84(20):8524–8531PubMedCrossRefGoogle Scholar
  152. 152.
    Davidson KL, Bush MF (2017) Effects of drift gas selection on the ambient-temperature, ion mobility mass spectrometry analysis of amino acids. Anal Chem 89(3):2017–2023PubMedCrossRefGoogle Scholar
  153. 153.
    Morris CB, May JC, Leaptrot KL, McLean JA (2019) Evaluating separation selectivity and collision cross section measurement reproducibility in helium, nitrogen, argon, and carbon dioxide drift gases for drift tube ion mobility-mass spectrometry. J Am Soc Mass Spectrom 30(6):1059–1068PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Norris JL, Farrow MA, Gutierrez DB, Palmer LD, Muszynski N, Sherrod SD, Pino JC, Allen JL, Spraggins JM, ALR L, Jordan A, Burns W, Poland JC, Romer C, Manier ML, Nei Y, Prentice BM, Rose KL, Hill S, Van de Plas R, Tsui T, Braman NM, Keller MR, Rutherford A, Lobdell N, Lopez CF, Lacy DB, JA ML, Wikswo JP, Skaar EP, Caprioli RM (2017) Integrated, high-throughput, multiomics platform enables data-driven construction of cellular responses and reveals global drug mechanisms of action. J Proteome Res 16(3):1364–1375PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Paglia G, Stocchero M, Cacciato S, Lai S, Angel P, Alam MT, Keller M, Ralser M, Astarita G (2016) Unbiased metabolomic investigation of Alzheimer’s disease brain points to dysregulation of mitochondrial aspartate metabolism. J Proteome Res 15:608–618PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Morgan XC, Segata N, Huttenhower C (2013) Biodiversity and functional genomics in the human microbiome. Trends Genet 29(1):51–58PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Weir TL, Manter DK, Brittany BA, Heuberger AL, Ryan EP (2013) Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 8(8):e70803PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Meyes RP, Rious KP (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11(7):868–875PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Caleb B. Morris
    • 1
    • 2
  • James C. Poland
    • 1
    • 2
  • Jody C. May
    • 1
    • 2
  • John A. McLean
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry, Center for Innovative Technology, Institute of Chemical BiologyVanderbilt UniversityNashvilleUSA
  2. 2.Vanderbilt-Ingram Cancer Center, Institute for Integrative Biosystems Research and EducationVanderbilt UniversityNashvilleUSA

Personalised recommendations