Introduction to Systems and Synthetic Biology in Hydrocarbon Microbiology: Applications

  • Víctor de Lorenzo
Part of the Springer Protocols Handbooks book series (SPH)


Contemporary Microbial Biotechnology is experiencing a rapid transition between being a mostly trial-and-error endeavour towards becoming a quantitative and predictable branch of contemporary research. A key ingredient of this shift involves the adoption of Systems and Synthetic Biology approaches for either revisiting typical themes (e.g. bioproduction of added-value molecules) or to develop altogether new ones (such as engineering of sensor/actuator devices). The first wave of goods reaching the biotechnological sector largely comes from metabolic engineering of microorganisms for biofuels, fine chemicals and high-added value molecules. But much more is still to come by applying electric and industrial engineering principles to biological systems as well as by learning from the way natural evolution has solved apparently intractable design problems.


Biodegradation Biofuels Biosensors Containment Logic gates New materials 



The work in Author’s Laboratory is supported by the CAMBIOS Project of the Spanish Ministry of Economy and Competitiveness, the ARISYS, EVOPROG and EMPOWERPUTIDA Contracts of the EU, The ERANET-IB and the PROMT Project of the CAM.


  1. 1.
    Weizmann C, Rosenfeld B (1937) The activation of the butanol-acetone fermentation of carbohydrates by Clostridium acetobutylicum. Biochem J 31:619–639CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ramos JL, Wasserfallen A, Rose K, Timmis KN (1987) Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkyl benzoates. Science 235:593–596Google Scholar
  3. 3.
    Rojo F, Pieper DH, Engesser K-H, Knackmuss H-J, Timmis KN (1987) Assemblage of ortho cleavage route for simultaneous degradation of chloro-and methylaromatics. Science 238:1395–1398Google Scholar
  4. 4.
    Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci 70:3240–3244CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chakrabarty AM (1981) Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. US Patent US4259444AGoogle Scholar
  6. 6.
    Lindow S, Panopoulos N, McFarland B (1989) Genetic engineering of bacteria from managed and natural habitats. Science 244:1300–1307Google Scholar
  7. 7.
    Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204CrossRefGoogle Scholar
  8. 8.
    De Lorenzo V (2009) Recombinant bacteria for environmental release: what went wrong and what we have learnt from it. Clin Microbiol Infect 15:63–65CrossRefPubMedGoogle Scholar
  9. 9.
    Lin F-K, Suggs S, Lin C-H, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci 82:7580–7584CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefPubMedGoogle Scholar
  11. 11.
    Danchin A (2009) Bacteria as computers making computers. FEMS Microbiol Rev 33:3–26CrossRefPubMedGoogle Scholar
  12. 12.
    de Lorenzo V, Danchin A (2008) Synthetic biology: discovering new worlds and new words. EMBO Rep 9:822–827CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Galvão TC, Mohn WW, de Lorenzo V (2005) Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol 23:497–506CrossRefPubMedGoogle Scholar
  14. 14.
    Nikel PI, Martínez-García E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379CrossRefPubMedGoogle Scholar
  15. 15.
    Nikel PI, Chavarría M, Fuhrer T, Sauer U, de Lorenzo V (2015) Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem 290:25920–25932CrossRefPubMedGoogle Scholar
  16. 16.
    Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222PubMedGoogle Scholar
  17. 17.
    Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4:161PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ceroni F, Algar R, Stan GB (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12:415–418Google Scholar
  19. 19.
    Perez-Pantoja D, Kim J, Silva-Rocha R, de Lorenzo V (2015) The differential response of the Pben promoter of Pseudomonas putida mt-2 to BenR and XylS prevents metabolic conflicts in m-xylene biodegradation. Environ Microbiol 17:64–75CrossRefPubMedGoogle Scholar
  20. 20.
    Jimenez JI, Perez-Pantoja D, Chavarria M, Diaz E, de Lorenzo V (2014) A second chromosomal copy of the catA gene endows Pseudomonas putida mt-2 with an enzymatic safety valve for excess of catechol. Environ Microbiol 16:1767–1778CrossRefPubMedGoogle Scholar
  21. 21.
    Tark M, Tover A, Tarassova K, Tegova R, Kivi G, Horak R, Kivisaar M (2005) A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress. J Bacteriol 187:5203–5213CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de Lorenzo V (2011) Beware of metaphors: chasses and orthogonality in synthetic biology. Bioeng Bugs 2:3–7CrossRefPubMedGoogle Scholar
  23. 23.
    Martinez-Garcia E, Benedetti I, Hueso A, De Lorenzo V (2015) Mining environmental plasmids for synthetic biology parts and devices. Microbiol Spectr 3:Plas-0033-2014Google Scholar
  24. 24.
    de Lorenzo V (2010) Environmental biosafety in the age of synthetic biology: do we really need a radical new approach? Environmental fates of microorganisms bearing synthetic genomes could be predicted from previous data on traditionally engineered bacteria for in situ bioremediation. Bioessays 32:926–931CrossRefPubMedGoogle Scholar
  25. 25.
    James W, Tooze J (1981) The DNA story, a documentary history of gene cloning. Freeman, New YorkGoogle Scholar
  26. 26.
    Landrain T, Meyer M, Perez AM, Sussan R (2013) Do-it-yourself biology: challenges and promises for an open science and technology movement. Syst Synth Biol 7:115–126CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Akbari OS, Bellen HJ, Bier E, Bullock SL, Burt A, Church GM, Cook KR, Duchek P, Edwards OR, Esvelt KM, Gantz VM, Golic KG, Gratz SJ, Harrison MM, Hayes KR, James AA, Kaufman TC, Knoblich J, Malik HS, Matthews KA, O’Connor-Giles KM, Parks AL, Perrimon N, Port F, Russell S, Ueda R, Wildonger J (2015). Safeguarding gene drive experiments in the laboratory. Science 349:927–929Google Scholar
  28. 28.
    Schmidt M, de Lorenzo V (2012) Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. FEBS Lett 586:2199–2206CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vickers C, Protocols for the production and analysis of isoprenoids in bacteria and yeast. Hydrocarbon and Lipid Microbiology Protocols: doi:  10.1007/8623_2015_107
  30. 30.
    Zhang K, Designing bacteria to produce esters. Hydrocarbon and Lipid Microbiology Protocols. doi:  10.1007/8623_2015_143
  31. 31.
    Tiso T, Germer A, Küpper B, Wichmann R, Blank L Methods for recombinant rhamnolipid production. Hydrocarbon and Lipid Microbiology Protocols. doi:  10.1007/8623_2015_60
  32. 32.
    Drone J, Oxyfunctionalization of linear alkanes with a biosynthetic, self-sufficient, selective and soluble hydroxylase. Hydrocarbon and Lipid Microbiology Protocols. doi:  10.1007/8623_2015_94
  33. 33.
    Kuipers O, Purification of peptide antimicrobials and thioether stabilized molecules produced in vivo by lantibiotic modification machineries. Hydrocarbon and Lipid Microbiology Protocols. doi:  10.1007/8623_2015_122
  34. 34.
    Park SJ, Lee SY, Synthetic biology of hydrophobic polymer production. Hydrocarbon and Lipid Microbiology Protocols. doi:  10.1007/8623_2015_53
  35. 35.
    Siedler S, Engineering transcription factor based biosensors for the detection of intracellular products. Hydrocarbon and Lipid Microbiology Protocols. doi:  10.1007/8623_2015_117
  36. 36.
    Mimee M, Tucker Alex C, Voigt Christopher A, Lu TK (2015) Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst 1:62–71Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Systems Biology ProgramCentro Nacional de Biotecnología CSICMadridSpain

Personalised recommendations