Introduction to Genetic, Genomic and System Analyses of Pure Cultures

Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Although considered to be only a minute fraction of global biodiversity, the handling of the culturable microbiota is still essential for exploring the interface of the bacterial world with lipids, hydrocarbons and other chemicals. This endeavour requires a suite of wet and computational tools that are the subject of the present volume. The protocols detailed below go from generating large volumes of data with a suite of omics to methods for distilling such a data into information and this in turn into new and useful knowledge. To this end, in silico approaches have to go hand-in-hand with new strategies for genome editing and controlled perturbations of the systems under study.

Keywords

Fluxes Genomics Interactomics Models Proteomics Tools 

Notes

Acknowledgments

The work in Author’s Laboratory is supported by the CAMBIOS Project of the Spanish Ministry of Economy and Competitiveness, the ARISYS, EVOPROG and EMPOWERPUTIDA Contracts of the EU, The ERANET-IB and the PROMT Project of the CAM.

References

  1. 1.
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512Google Scholar
  2. 2.
    Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA 3rd, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403Google Scholar
  3. 3.
    Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695CrossRefPubMedGoogle Scholar
  4. 4.
    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664Google Scholar
  5. 5.
    Danchin A (2002) The Delphic boat: what genomes tell us. Harvard University Press, CambridgeGoogle Scholar
  6. 6.
    Feng Y, Zhang Y, Ying C, Wang D, Du C (2015) Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinform 13:4–16CrossRefGoogle Scholar
  7. 7.
    Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–791CrossRefPubMedGoogle Scholar
  8. 8.
    de Lorenzo V (2014) From the selfish gene to selfish metabolism: revisiting the central dogma. BioEssays 36:226–235CrossRefPubMedGoogle Scholar
  9. 9.
    Palsson BO (2011) Systems Biology: Simulation of Dynamic Network States. Cambridge University Press. Cambridge (UK)Google Scholar
  10. 10.
    O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Marx V (2013) Biology: the big challenges of big data. Nature 498:255–260CrossRefPubMedGoogle Scholar
  12. 12.
    Danchin A (2009) Bacteria as computers making computers. FEMS Microbiol Rev 33:3–26CrossRefPubMedGoogle Scholar
  13. 13.
    Belda E, Vallenet D, MÕdigue C (2015) Accurate microbial genome annotation using an integrated and user-friendly environment for community expertise of gene functions: the microscope platform. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2015_179
  14. 14.
    Roggo C, van der Meer JR (2014) Genetic, genomic, and system analyses for pure cultures and communities: protocol – ultra-high-throughput transposon scanning of bacterial genomes. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi:  10.1007/8623_2014_21
  15. 15.
    Kim J, de Lorenzo V (2015) Deep sequencing to study microbial transcriptomic responses to hydrocarbon degradation/production/stress. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2015_101
  16. 16.
    Oliveros J (2015) Approaches for displaying complete transcriptomes of environmental bacteria. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2015_59
  17. 17.
    Toshchakov SV, Kublanov IV, Messina E, Yakimov MM, Golyshin PN (2015) Genomic analysis of pure cultures and communities. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2015_126
  18. 18.
    Hartmann EM, Gaillard JC, Armengaud J (2014) Shotgun proteomics for hydrocarbon microbiology. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2014_18
  19. 19.
    Goldfine H, Guan Z (2015) Lipidomic analysis of bacteria by thin-layer chromatography and liquid chromatography/mass spectrometry. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2015_56
  20. 20.
    Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891Google Scholar
  21. 21.
    Storz G, Wolf YI, Ramamurthi KS (2014) Small proteins can no longer be ignored. Annu Rev Biochem 83:753–777CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hernández-Arranz S, La Rosa R, Moreno R, Sevilla E, Yuste L, Rojo F (2014) Protocols on regulation of gene expression. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2014_13
  23. 23.
    Borrero-de Acuþa JM, Jðnsch L, Rohde M, Timmis KN, Jahn D, Jahn M (2015) Interatomic characterization of protein–protein interactions in membrane-associated mega-complexes. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi:  10.1007/8623_2015_160
  24. 24.
    Röling WFM, Fillinger L, Nunes da Rocha U (2014) Analysis of the hierarchical and metabolic regulation of flux through metabolic pathways. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2014_6
  25. 25.
    Schmitz A, Ebert BE, Blank LM (2015) GC-MS-based determination of mass isotopomer distributions for 13C-based metabolic flux analysis. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2015_78
  26. 26.
    Durot M, Bourguignon PY, Schachter V (2008) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nogales J, Agudo L (2015) A practical protocol for integration of transcriptomics data into genome-scale metabolic reconstructions. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi: 10.1007/8623_2015_98
  28. 28.
    Aparicio T, de Lorenzo V, MartÚnez-GarcÚa E (2015) Broadening the SEVA plasmid repertoire to facilitate genomic editing of gram-negative bacteria. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. doi:  10.1007/8623_2015_102
  29. 29.
    Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Standage-Beier K, Zhang Q, Wang X (2015) Targeted large-scale deletion of bacterial genomes using CRISPR-Nickases. ACS Synth Biol 4:1217–1225.Google Scholar
  31. 31.
    Calles B, de Lorenzo V (2015) Knock-In-Leave-Behind (KILB): genetic grafting of protease-cleaving sequences into permissive sites of proteins with a Tn5-based transposition system. Hydrocarb Lipid Microbiol Protoc. doi: 10.1007/8623_2015_114
  32. 32.
    Brenner S (2003) Nature’s gift to science (Nobel lecture). Chembiochem 4:683–687CrossRefPubMedGoogle Scholar
  33. 33.
    Oberhardt MA, Zarecki R, Gronow S, Lang E, Klenk HP, Gophna U, Ruppin E (2015) Harnessing the landscape of microbial culture media to predict new organism-media pairings. Nature Commun 6:8493CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Systems Biology ProgramCentro Nacional de Biotecnología CSICMadridSpain

Personalised recommendations