Purification of Lipid Rafts from Bacterial Membranes

Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The membranes of eukaryotic cells contain microdomains that are different in lipid composition to the surrounding membrane and aggregate a number of proteins related to signal transduction and protein trafficking. These are referred to as lipid rafts or membrane rafts and are specialized in the regulation of cellular processes related to signal transduction, protein sorting, and membrane trafficking. The integrity of lipid rafts is important for the correct functionality of these raft-harbored cellular processes, and their alteration is related to the occurrence of severe diseases. We recently discovered that the membranes of bacterial cells also organize their signal transduction pathways in functional membrane microdomains that are structurally and functionally similar to the lipid rafts of eukaryotic cells. The existence of lipid rafts in the membrane of bacteria suggests that bacteria are more complex organisms than previously appreciated, and thus, their cellular complexity should be explored in more detail. In this protocol, we provide a detailed description of the materials and techniques that are necessary to purify the lipid rafts from bacterial membranes, which is a necessary step to explore the number of proteins and lipid species that constitute these membrane platforms. This is an essential protocol for any laboratory interested in exploring any aspect related to organization of lipid rafts in bacterial membranes.

Keywords

Bacillus subtilis Bacteria Flotillin Lipid rafts 

References

  1. 1.
    Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  3. 3.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRefPubMedGoogle Scholar
  4. 4.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50CrossRefPubMedGoogle Scholar
  5. 5.
    Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699CrossRefPubMedGoogle Scholar
  6. 6.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science (New York, NY) 175:720–731Google Scholar
  7. 7.
    Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kraft ML (2013) Plasma membrane organization and function: moving past lipid rafts. Mol Biol Cell 24:2765–2768CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Neumann AK, Itano MS, Jacobson K (2010) Understanding lipid rafts and other related membrane domains. F1000 Biol Rep 2:31Google Scholar
  10. 10.
    Owen DM, Rentero C, Rossy J et al (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3:446–454CrossRefPubMedGoogle Scholar
  11. 11.
    Spira F, Mueller NS, Beck G, von Olshausen P, Beig J, Wedlich-Soldner R (2012) Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14:640–648CrossRefPubMedGoogle Scholar
  12. 12.
    Schuck S, Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964CrossRefPubMedGoogle Scholar
  13. 13.
    Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202CrossRefPubMedGoogle Scholar
  14. 14.
    van Meer G, Simons K (1988) Lipid polarity and sorting in epithelial cells. J Cell Biochem 36:51–58CrossRefPubMedGoogle Scholar
  15. 15.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefPubMedGoogle Scholar
  16. 16.
    Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 25:412–417CrossRefPubMedGoogle Scholar
  17. 17.
    Morrow IC, Parton RG (2005) Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic (Copenhagen, Denmark) 6:725–740Google Scholar
  18. 18.
    Babuke T, Tikkanen R (2007) Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 86:525–532CrossRefPubMedGoogle Scholar
  19. 19.
    Otto GP, Nichols BJ (2011) The roles of flotillin microdomains–endocytosis and beyond. J Cell Sci 124:3933–3940CrossRefPubMedGoogle Scholar
  20. 20.
    Stuermer CA (2011) Reggie/flotillin and the targeted delivery of cargo. J Neurochem 116:708–713CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao F, Zhang J, Liu YS, Li L, He YL (2011) Research advances on flotillins. Virol J 8:479CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Baumgarten T, Sperling S, Seifert J et al (2012) Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78:6217–6224CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lopez D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Donovan C, Bramkamp M (2009) Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155:1786–1799CrossRefPubMedGoogle Scholar
  25. 25.
    Yepes A, Schneider J, Mielich B et al (2012) The biofilm formation defect of a Bacillus subtilis flotillin-defective mutant involves the protease FtsH. Mol Microbiol 86:457–471CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bach JN, Bramkamp M (2013) Flotillins functionally organize the bacterial membrane. Mol Microbiol 88:1205–1217CrossRefPubMedGoogle Scholar
  27. 27.
    Mielich-Suss B, Schneider J, Lopez D (2013) Overproduction of flotillin influences cell differentiation and shape in Bacillus subtilis. MBio 4:e00719-13CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ben-Menachem G, Kubler-Kielb J, Coxon B, Yergey A, Schneerson R (2003) A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci U S A 100:7913–7918CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    LaRocca TJ, Crowley JT, Cusack BJ et al (2010) Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8:331–342CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    le Duc H, Fraser PD, Tam NK, Cutting SM (2006) Carotenoids present in halotolerant Bacillus spore formers. FEMS Microbiol Lett 255:215–224CrossRefGoogle Scholar
  31. 31.
    Khaneja R, Perez-Fons L, Fakhry S et al (2010) Carotenoids found in Bacillus. J Appl Microbiol 108:1889–1902PubMedGoogle Scholar
  32. 32.
    Rivera-Milla E, Stuermer CA, Malaga-Trillo E (2006) Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci 63:343–357CrossRefPubMedGoogle Scholar
  33. 33.
    Brown DA (2002) Isolation and use of rafts. Curr Protoc Immunol Chapter 11:Unit 11 0Google Scholar
  34. 34.
    Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388CrossRefPubMedGoogle Scholar
  35. 35.
    Shaw AS (2006) Lipid rafts: now you see them, now you don't. Nat Immunol 7:1139–1142CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute for Molecular Infection Biology (IMIB), University of WürzburgWürzburgGermany
  2. 2.Research Center for Infectious Diseases (ZINF), University of WürzburgWürzburgGermany

Personalised recommendations