Knock-In-Leave-Behind (KILB): Genetic Grafting of Protease-Cleaving Sequences into Permissive Sites of Proteins with a Tn5-Based Transposition System

Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Endowing proteins with proteolytic cleavage sites without affecting their native function when the cognate protease is not present is a challenging engineering effort for fundamental studies and biotechnological applications. Insertion of such short polypeptides often requires some knowledge of the target protein structure or identification of permissive sites that accept the genetic grafting without loss of function, e.g., by means of transposon-mediated linker-scanning mutagenesis. We describe a procedure to deliver in-frame polypeptides throughout the sequence of any target protein with a knock-in-leave-behind (KILB) transposon-based method. The mini-Tn5 synthetic transposable element reported here was tailored to randomly introduce recognition sites of the specific viral protease NIa into permissive locations of the target protein. Protein insertion variants can then be examined to detect phenotypic differences once cleaved in vivo by the cognate protease. Two application scenarios are discussed, i.e., proteolizable variants of the regulatory protein XylR of Pseudomonas putida and development of phenotypic mutants of metabolic functions.

Keywords

Conditional phenotypes Metabolic engineering Mini-transposons NIa protease Pseudomonas Synthetic biology XylR 

Notes

Acknowledgments

This work was supported by the CAMBIOS Program of the Spanish Ministry of Economy and Competitiveness; the ST-FLOW, ARISYS, EVOPROG, and EMPOWERPUTIDA contracts of the EU; the ERANET-IB; and the PROMT Project of the CAM.

References

  1. 1.
    Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S (2013) Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings. ChemBioChem 14:2310–2321CrossRefPubMedGoogle Scholar
  2. 2.
    Goff SP, Prasad VR (1991) Linker insertion mutagenesis as probe of structure-function relationships. Methods Enzymol 208:586–603CrossRefPubMedGoogle Scholar
  3. 3.
    Hayes F, Hallet B (2000) Pentapeptide scanning mutagenesis: encouraging old proteins to execute unusual tricks. Trends Microbiol 8:571–577CrossRefPubMedGoogle Scholar
  4. 4.
    Manoil C, Traxler B (2000) Insertion of in-frame sequence tags into proteins using transposons. Methods 20:55–61CrossRefPubMedGoogle Scholar
  5. 5.
    Traxler B, Gachelet E (2007) Sets of transposon‐generated sequence‐tagged mutants for structure–function analysis and engineering. Methods Enzymol 421:83–90CrossRefPubMedGoogle Scholar
  6. 6.
    García JA, Riechmann J, Lain S (1989) Proteolytic activity of the plum pox potyvirus Nla-like protein in Escherichia coli. Virology 170:362–369CrossRefPubMedGoogle Scholar
  7. 7.
    Goryshin IY, Miller JA, Kil YV, Lanzov VA, Reznikoff WS (1998) Tn5/IS50 target recognition. Proc Natl Acad Sci U S A 95:10716–10721CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Reznikoff WS (2008) Transposon Tn5. Annu Rev Genet 42:269–286CrossRefPubMedGoogle Scholar
  9. 9.
    Miller WG, Lindow SE (1997) An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149–153CrossRefPubMedGoogle Scholar
  10. 10.
    Martínez-García E, Calles B, Arevalo-Rodriguez M, de Lorenzo V (2011) pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol 11:38–50CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de las Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V (2012) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    García JA, Riechmann JL, Laín S (1989) Artificial cleavage site recognized by plum pox potyvirus protease in Escherichia coli. J Virol 63:2457–2460PubMedPubMedCentralGoogle Scholar
  13. 13.
    Laín S, Riechmann J, García JA (1989) The complete nucleotide sequence of plum pox potyvirus RNA. Virus Res 13:157–172CrossRefPubMedGoogle Scholar
  14. 14.
    de Lorenzo V, Herrero M, Metzke M, Timmis KN (1991) An upstream XylR- and IHF-induced nucleoprotein complex regulates the sigma 54-dependent Pu promoter of TOL plasmid. EMBO J 10:1159–1167PubMedPubMedCentralGoogle Scholar
  15. 15.
    Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268CrossRefPubMedGoogle Scholar
  16. 16.
    Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119CrossRefPubMedGoogle Scholar
  17. 17.
    Calles B, de Lorenzo V (2013) Expanding the boolean logic of the prokaryotic transcription factor XylR by functionalization of permissive sites with a protease-target sequence. ACS Synth Biol 2:594–603CrossRefPubMedGoogle Scholar
  18. 18.
    Bhasin A, Goryshin IY, Reznikoff WS (1999) Hairpin formation in Tn5 transposition. J Biol Chem 274:37021–37029CrossRefPubMedGoogle Scholar
  19. 19.
    Goryshin IY, Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273:7367–7374CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Systems Biology Program, Centro Nacional de Biotecnología-CSICMadridSpain

Personalised recommendations