Advertisement

Identification of Microorganisms in Hydrocarbon-Contaminated Aquifer Samples by Fluorescence In Situ Hybridization (CARD-FISH)

  • Schattenhofer MarthaEmail author
  • Valerie Hubalek
  • Annelie Wendeberg
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

High loads of petroleum hydrocarbons in contaminated soils and sediments make these ecosystems difficult to study with molecular techniques. Among these sites, aquifers – environments with low turnover rates and, hence, slow-growing microbial communities–pose a great challenge for microbial ecologists.

Fluorescence produced by petroleum hydrocarbons coating sediment particles can be so strong that microscopic techniques are made impossible. Low microbial cell numbers pose further limitations for molecular analyses such as fluorescence in situ hybridization (FISH).

Here, we present a protocol for the separation of microbial cells from sediment samples of highly petroleum-contaminated aquifers. By excluding the strongly autofluorescing sediment particles, by concentrating microbial cells on membrane filters, and by using signal amplification in combination with FISH (CARD-FISH), we were able to quantify various microbial populations in this intriguing ecosystem.

Keywords

Aquifer CARD-FISH Cell quantification Hydrocarbon contamination Microbial community 

References

  1. 1.
    Brar SK, Verma M, Surampalli RY et al (2006) Bioremediation of hazardous wastes—a review. Pract Period Hazard Toxic Radioactive Waste Manag 10:59–72CrossRefGoogle Scholar
  2. 2.
    Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89CrossRefPubMedGoogle Scholar
  3. 3.
    Anneser B, Pilloni G, Bayer A et al (2010) High resolution analysis of contaminated aquifer sediments and groundwater—what can be learned in terms of natural attenuation? Geomicrobiol J 27:130–142CrossRefGoogle Scholar
  4. 4.
    Griebler C, Mindl B, Slezak D, Geiger-Kaiser M (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat Microb Ecol 28:117–129CrossRefGoogle Scholar
  5. 5.
    DeLong EF, Taylor LT, Marsh TL, Preston CM (1999) Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl Environ Microb 65:5554–5563Google Scholar
  6. 6.
    Glöckner FO, Amann R, Alfreider A et al (1996) An in situ hybridization protocol for detection and identification of planktonic bacteria. Syst Appl Microbiol 19:403–406CrossRefGoogle Scholar
  7. 7.
    Schroth MH, Kleikemper J, Bolliger C, Bernasconi SM, Zeyer J (2001) In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push–pull tests and stable sulfur isotope analyses. J Contam Hydrol 51:179–195CrossRefPubMedGoogle Scholar
  8. 8.
    Ishii K, Mußmann M, MacGregor BJ, Amann R (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50:203–213CrossRefPubMedGoogle Scholar
  9. 9.
    Llobet-Brossa E, Rosselló-Mora R, Amann R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microb 64:2691–2696Google Scholar
  10. 10.
    Långmark J, Storey MV, Ashbolt NJ, Stenström TA (2004) Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Res 38:740–748CrossRefPubMedGoogle Scholar
  11. 11.
    Araya R, Tani K, Takagi T, Yamaguchi N, Nasu M (2003) Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol Ecol 43:111–119CrossRefPubMedGoogle Scholar
  12. 12.
    Kalmbach S, Manz W, Szewzyk U (1997) Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microbiol Ecol 22:265–279CrossRefGoogle Scholar
  13. 13.
    Manz W, Szewzyk U, Ericsson P, Amann R, Schleifer KH, Stenström TA (1993) In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microb 59:2293–2298Google Scholar
  14. 14.
    Albrechtsen H-J, Christensen TH (1994) Evidence for microbial iron reduction in a landfill leachate-polluted aquifer (Vejen, Denmark). Appl Environ Microb 60:3920–3925Google Scholar
  15. 15.
    Albrechtsen H-J, Winding A (1992) Microbial biomass and activity in subsurface sediments from Vejen, Denmark. Microbial Ecol 23:303–317CrossRefGoogle Scholar
  16. 16.
    Holm PE, Nielsen PH, Albrechtsen H-J, Christensen TH (1992) Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer. Appl Environ Microb 58:3020–3026Google Scholar
  17. 17.
    Madsen EL, Ghiorse WC (1993) Groundwater microbiology: subsurface ecosystem processes. In: Ford T (ed) Aquatic microbiology: an ecological approach. Blackwell, CambridgeGoogle Scholar
  18. 18.
    Brad T, Van Breukelen BM, Braster M, Van Straalen NM, Röling WFM (2008) Spatial heterogeneity in sediment-associated bacterial and eukaryotic communities in a landfill leachate-contaminated aquifer. FEMS Microbiol Ecol 65:534–543CrossRefPubMedGoogle Scholar
  19. 19.
    Breuker A, Köweker G, Blazejak A, Schippers A (2011) The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA. Front Microbiol 2:156CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Suárez-Suárez A, López-López A, Tovar-Sánchez A et al (2011) Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Environ Microbiol 13:1488–1499CrossRefPubMedGoogle Scholar
  21. 21.
    Witzig M, Boguhn J, Kleinsteuber S, Fetzer I, Rodehutscord M (2010) Influence of the maize silage to grass silage ratio and feed particle size of rations for ruminants on the community structure of ruminal Firmicutes in vitro. J Appl Microbiol 109:1998–2010CrossRefPubMedGoogle Scholar
  22. 22.
    Grenni P, Gibello A, Barra Caracciolo A et al (2009) A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples. Water Res 43:2999–3008CrossRefPubMedGoogle Scholar
  23. 23.
    Kleikemper J, Pelz O, Schroth MH, Zeyer J (2002) Sulfate-reducing bacterial community response to carbon source amendments in contaminated aquifer microcosms. FEMS Microbiol Ecol 42:109–118CrossRefPubMedGoogle Scholar
  24. 24.
    Pombo SA, Kleikemper J, Schroth MH, Zeyer J (2005) Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria. FEMS Microbiol Ecol 51:197–207CrossRefPubMedGoogle Scholar
  25. 25.
    Richardson RE, James CA, Bhupathiraju VK, Alvarez-Cohen L (2002) Microbial activity in soils following steam treatment. Biodegradation 13:285–295CrossRefPubMedGoogle Scholar
  26. 26.
    Rogers SW, Ong SK, Moorman TB (2007) Mineralization of PAHs in coal–tar impacted aquifer sediments and associated microbial community structure investigated with FISH. Chemosphere 69:1563–1573CrossRefPubMedGoogle Scholar
  27. 27.
    Kleikemper J, Pombo SA, Schroth MH, Sigler WV, Pesaro M, Zeyer J (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microb 71:149–158CrossRefGoogle Scholar
  28. 28.
    Pernthaler A, Pernthaler J. (2007) Fluorescence in situ hybridization for the identification of environmental microbes. In: Hilario E, Mackay J (eds) Methods in molecular biology, vol 353. Humana Press, New York, USA, pp 153–164Google Scholar
  29. 29.
    Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microb 68:3094–3101CrossRefGoogle Scholar
  30. 30.
    Martin-Laurent F, Philippot L, Hallet S et al (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microb 67:2354–2359CrossRefGoogle Scholar
  31. 31.
    Cébron A, Norini M-P, Beguiristain T, Leyval C (2008) Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159CrossRefPubMedGoogle Scholar
  32. 32.
    Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microbiol Ecol 52:523–532CrossRefGoogle Scholar
  33. 33.
    Zhang T, Fang HHP (2006) Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol 70:281–289CrossRefPubMedGoogle Scholar
  34. 34.
    Herrick JB, Madsen EL, Batt CA, Ghiorse WC (1993) Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl Environ Microb 59:687–694Google Scholar
  35. 35.
    Kell DB, Ryder HM, Kaprelyants AS, Westerhoff HV (1991) Quantifying heterogeneity: flow cytometry of bacterial cultures. Antonie Van Leeuwenhoek 60:145–158CrossRefPubMedGoogle Scholar
  36. 36.
    Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696PubMedPubMedCentralGoogle Scholar
  37. 37.
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microb 56:1919–1925Google Scholar
  38. 38.
    Tischer K, Zeder M, Klug R et al (2012) Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol 35:526–532CrossRefPubMedGoogle Scholar
  39. 39.
    Takahata Y, Kasai Y, Hoaki T, Watanabe K (2006) Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation. Appl Microbiol Biotechnol 73:713–722CrossRefPubMedGoogle Scholar
  40. 40.
    Thornton SF, Quigley S, Spence MJ, Banwart SA, Bottrell S, Lerner DN (2001) Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer. J Contam Hydrol 53:233–267CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Schattenhofer Martha
    • 1
    Email author
  • Valerie Hubalek
    • 1
    • 2
  • Annelie Wendeberg
    • 2
  1. 1.Department of Ecology and Genetics, LimnologyUppsala UniversityUppsalaSweden
  2. 2.Microbial Ecosystem Services Group, Department of Environmental MicrobiologyUFZ – Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations