Advertisement

pp 1-30 | Cite as

Lesion-Behavior Mapping in Cognitive Neuroscience: A Practical Guide to Univariate and Multivariate Approaches

  • Hans-Otto KarnathEmail author
  • Christoph Sperber
  • Daniel Wiesen
  • Bianca de Haan
Protocol
Part of the Neuromethods book series

Abstract

Lesion-behavior mapping is an influential and popular approach to anatomically localize cognitive brain functions in the human brain. The present chapter provides a practical guideline for each step of the typical lesion-behavior mapping study pipeline, ranging from patient and imaging data, lesion delineation, spatial normalization, and statistical testing to the anatomical interpretation of results. An important aspect of this guideline at the statistical level will be to address the procedures related to univariate as well as multivariate voxelwise lesion analysis approaches.

Keywords

Lesion analysis Univariate voxel-based lesion-symptom mapping Multivariate voxel-based lesion-symptom mapping Multivariate pattern analysis VLSM VLBM MLBM MVPA Brain behavior inference Stroke Human 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (KA 1258/23-1). Daniel Wiesen was supported by the Luxembourg National Research Fund (FNR/11601161).

References

  1. 1.
    Rorden C, Karnath H-O (2004) Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat Rev Neurosci 5:813–819Google Scholar
  2. 2.
    Karnath H-O, Steinbach JP (2011) Do brain tumours allow valid conclusions on the localisation of human brain functions?—Objections. Cortex 47:1004–1006Google Scholar
  3. 3.
    de Haan B, Karnath H-O (2018) A hitchhiker’s guide to lesion-behaviour mapping. Neuropsychologia 115:5–16Google Scholar
  4. 4.
    Wick W, Stupp R, Beule A-C, Bromberg J, Wick A, Ernemann U, Platten M, Marosi C, Mason WP, van den Bent M, Weller M, Rorden C, Karnath H-O, The European Organisation for Research and Treatment of Cancer and the National Cancer Institute of Canada Clinical Trails Group (2008) A novel tool to analyse MRI recurrence patterns in glioblastoma. Neuro Oncol 10:1019–1024Google Scholar
  5. 5.
    Karnath H-O, Rennig J (2017) Investigating structure and function in the healthy human brain: validity of acute versus chronic lesion-symptom mapping. Brain Struct Funct 222:2059–2070Google Scholar
  6. 6.
    Karnath H-O, Rennig J, Johannsen L, Rorden C (2011) The anatomy underlying acute versus chronic spatial neglect: a longitudinal study. Brain 134:903–912Google Scholar
  7. 7.
    Abela E, Missimer J, Wiest R, Federspiel A, Hess C, Sturzenegger M, Weder B (2012) Lesions to primary sensory and posterior parietal cortices impair recovery from hand paresis after stroke. PloS One 7:e31275Google Scholar
  8. 8.
    Wu O, Cloonan L, Mocking SJT, Bouts MJRJ, Copen WA, Cougo-Pinto PT, Fitzpatrick K, Kanakis A, Schaefer PW, Rosand J, Furie KL, Rost NS (2015) Role of acute lesion topography in initial ischemic stroke severity and long-term functional outcomes. Stroke 46:2438–2444Google Scholar
  9. 9.
    Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath H-O (2012) Age-specific CT and MRI templates for spatial normalization. Neuroimage 61:957–965Google Scholar
  10. 10.
    Sperber C, Karnath H-O (2018) On the validity of lesion-behaviour mapping methods. Neuropsychologia 115:17–24Google Scholar
  11. 11.
    Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200Google Scholar
  12. 12.
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128Google Scholar
  13. 13.
    Wilke M, de Haan B, Juenger H, Karnath HO (2011) Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage 56:2038–2046Google Scholar
  14. 14.
    Clas P, Groeschel S, Wilke M (2012) A semi-automatic algorithm for determining the demyelination load in metachromatic leukodystrophy. Acad Radiol 19:26–34Google Scholar
  15. 15.
    de Haan B, Clas P, Juenger H, Wilke M, Karnath H-O (2015) Fast semi-automated lesion demarcation in stroke. Neuroimage Clin 9:69–74Google Scholar
  16. 16.
    Goebel R (2012) BrainVoyager—past, present, future. Neuroimage 62:748–756Google Scholar
  17. 17.
    Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62:782–790Google Scholar
  18. 18.
    Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173Google Scholar
  19. 19.
    Cox RW (2012) AFNI: what a long strange trip it’s been. Neuroimage 62:743–747Google Scholar
  20. 20.
    Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044Google Scholar
  21. 21.
    Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851Google Scholar
  22. 22.
    Crinion J, Ashburner J, Leff A, Brett M, Price C, Friston K (2007) Spatial normalization of lesioned brains: performance evaluation and impact on fMRI analyses. Neuroimage 37:866–875Google Scholar
  23. 23.
    Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46:786–802Google Scholar
  24. 24.
    Winkler AM, Kochunov P, Glahn DC. FLAIR templates. http://glahngroup.org
  25. 25.
    Brett M, Leff AP, Rorden C, Ashburner J (2001) Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14:486–500Google Scholar
  26. 26.
    Nachev P, Coulthard E, Jäger HR, Kennard C, Husain M (2008) Enantiomorphic normalization of focally lesioned brains. Neuroimage 39:1215–1226Google Scholar
  27. 27.
    Karnath H-O, Sperber C, Rorden C (2018) Mapping human brain lesions and their functional consequences. Neuroimage 165:180–189Google Scholar
  28. 28.
    Xu T, Jha A, Nachev P (2018) The dimensionalities of lesion-deficit mapping. Neuropsychologia 115:134–141Google Scholar
  29. 29.
    Rorden C, Karnath H-O, Bonilha L (2007) Improving lesion-symptom mapping. J Cogn Neurosci 19:1081–1088Google Scholar
  30. 30.
    Lorca-Puls DL, Gajardo-Vidal A, White J, Seghier ML, Leff AP, Green DW, Crinion JT, Ludersdorfer P, Hope TMH, Bowman H, Price CJ (2018) The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings. Neuropsychologia 115:101–111Google Scholar
  31. 31.
    Brunner E, Munzel U (2000) The nonparametric Behrens-Fisher problem: asymptotic theory and a small-sample approximation. Biom J 42:17–25Google Scholar
  32. 32.
    Liebermeister C (1877) Über Wahrscheinlichkeitsrechnung in Anwendung auf therapeutische Statistik. Samml Klin Vorträge (Innere Medizin No. 31-64) 110:935–962Google Scholar
  33. 33.
    Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450Google Scholar
  34. 34.
    Kimberg DY, Coslett HB, Schwartz MF (2007) Power in voxel-based lesion-symptom mapping. J Cogn Neurosci 19:1067–1080Google Scholar
  35. 35.
    Smith DV, Clithero J, Rorden C, Karnath H-O (2013) Decoding the anatomical network of spatial attention. Proc Natl Acad Sci U S A 110:1518–1523Google Scholar
  36. 36.
    Zhang Y, Kimberg DY, Coslett HB, Schwartz MF, Wang Z (2014) Multivariate lesion-symptom mapping using support vector regression. Hum Brain Mapp 35:5861–5876Google Scholar
  37. 37.
    Mah Y-H, Husain M, Rees G, Nachev P (2014) Human brain lesion-deficit inference remapped. Brain 137:2522–2531Google Scholar
  38. 38.
    Toba MN, Zavaglia M, Rastelli F, Valabrégue R, Pradat-Diehl P, Valero-Cabré A, Hilgetag CC (2017) Game theoretical mapping of causal interactions underlying visuo-spatial attention in the human brain based on stroke lesions. Hum Brain Mapp 3471:3454–3471Google Scholar
  39. 39.
    Pustina D, Avants B, Faseyitan OK, Medaglia JD, Coslett HB (2018) Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations. Neuropsychologia 115:154–166Google Scholar
  40. 40.
    Sperber C, Wiesen D, Karnath H-O (2019) An empirical evaluation of multivariate lesion behaviour mapping using support vector regression. Hum Brain Mapp 40:1381–1390Google Scholar
  41. 41.
    Rasmussen PM, Hansen LK, Madsen KH, Churchill NW, Strother SC (2012) Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognit 45:2085–2100Google Scholar
  42. 42.
    DeMarco AT, Turkeltaub PE (2018) A multivariate lesion symptom mapping toolbox and examination of lesion-volume biases and correction methods in lesion-symptom mapping. Hum Brain Mapp 21:2461–2467Google Scholar
  43. 43.
    Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25Google Scholar
  44. 44.
    Mirman D, Landrigan J-F, Kokolis S, Verillo S, Ferrara C, Pustina D (2018) Corrections for multiple comparisons in voxel-based lesion-symptom mapping. Neuropsychologia 115:112–123Google Scholar
  45. 45.
    Sperber C, Karnath H-O (2017) Impact of correction factors in human brain lesion-behavior inference. Hum Brain Mapp 38:1692–1701Google Scholar
  46. 46.
    Rudrauf D, Mehta S, Grabowski TJ (2008) Disconnection’s renaissance takes shape: formal incorporation in group-level lesion studies. Cortex 44:1084–1096Google Scholar
  47. 47.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  48. 48.
    Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Statistics 29:1165–1188Google Scholar
  49. 49.
    Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878Google Scholar
  50. 50.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289Google Scholar
  51. 51.
    Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, Mitchell TN, Brooks DJ, Duncan JS (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19:224–247Google Scholar
  52. 52.
    Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, Poldrack RA, Bilder RM, Toga AW (2008) Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39:1064–1080Google Scholar
  53. 53.
    Zilles K, Schleicher A, Langemann C, Amunts K, Morosan P, Palomero-Gallagher N, Schormann T, Mohlberg H, Bürgel U, Steinmetz H, Schlaug G, Roland PE (1997) Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Mapp 5:218–221Google Scholar
  54. 54.
    Joliot M, Jobard G, Naveau M, Delcroix N, Petit L, Zago L, Crivello F, Mellet E, Mazoyer B, Tzourio-Mazoyer N (2015) AICHA: an atlas of intrinsic connectivity of homotopic areas. J Neurosci Methods 254:46–59Google Scholar
  55. 55.
    Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178Google Scholar
  56. 56.
    Zhang Y, Zhang J, Oishi K, Faria AV, Jiang H, Li X, Akhter K, Rosa-Neto P, Pike GB, Evans A, Toga AW, Woods R, Mazziotta JC, Miller MI, van Zijl PCM, Mori S (2010) Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52:1289–1301Google Scholar
  57. 57.
    Thiebaut de Schotten M, Ffytche DH, Bizzi A, Dell’Acqua F, Allin M, Walshe M, Murray R, Williams SC, Murphy DGM, Catani M (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54:49–59Google Scholar
  58. 58.
    Bürgel U, Amunts K, Battelli L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29:1092–1105Google Scholar
  59. 59.
    de Haan B, Karnath H-O (2017) ‘Whose atlas I use, his song I sing?’—The impact of anatomical atlases on fiber tract contributions to cognitive deficits. Neuroimage 163:301–309Google Scholar
  60. 60.
    Wiesen D, Sperber C, Yourganov G, Rorden C, Karnath H-O (2019) Using machine learning-based lesion behavior mapping to identify anatomical networks of cognitive dysfunction: spatial neglect and attention bioRxiv 556753.  https://doi.org/10.1101/556753
  61. 61.
    Karnath H-O, Perenin M-T (2005) Cortical control of visually guided reaching: evidence from patients with optic ataxia. Cereb Cortex 15:1561–1569Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2019

Authors and Affiliations

  • Hans-Otto Karnath
    • 1
    Email author
  • Christoph Sperber
    • 1
  • Daniel Wiesen
    • 1
  • Bianca de Haan
    • 2
  1. 1.Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  2. 2.Division of Psychology, Department of Life Sciences, College of Health and Life SciencesBrunel University LondonUxbridgeUK

Personalised recommendations