pp 1-23 | Cite as

Proteomic Tools to Study the Effect of BDNF on De Novo Protein Synthesis

  • Heather Bowling
  • Eric KlannEmail author
Part of the Neuromethods book series


BDNF has been long recognized as a potent contributor to neural development, maintenance, and plasticity, and previous studies have revealed protein synthesis to be a major effector in its molecular mechanisms of action. Until recently, the only tools available to study protein synthesis were unlabeled proteomics and radioactive amino acid labeling. The emergence of new tools in the 2000s has led to more precise and in-depth understanding of the mechanism of action of BDNF at the protein synthesis level. In this chapter, we will provide an overview of some of these methods—SUnSET, BONCAT, FUNCAT, and BONLAC—for the study of BDNF-induced de novo protein synthesis.





We gratefully acknowledge Dr. Aditi Bhattacharya, Dr. Thomas Neubert, and Dr. Guoan Zhang for their help in preparing this chapter. This work was supported by NIH grant NS034007 (E.K.).


  1. 1.
    Gold MA, Heydorn WE, Creed GJ, Weller JL, Klein DC, Jacobowitz DM (1984) Electrophoresis 5:116–121Google Scholar
  2. 2.
    Kumari D, Bhattacharya A, Nadel J, Moulton K, Zeak NM, Glicksman A, Dobkin C, Brick DJ, Schwartz PH, Smith CB, Klann E, Usdin K (2014) Hum Mutat 35(12):1485–1494Google Scholar
  3. 3.
    Schmidt EK, Clavarino G, Ceppi M, Pierre P (2009) Nat Methods 6(4):275–277Google Scholar
  4. 4.
    Marciano R, Leprivier G, Rotblat B (2018) Cell Death Dis 9(2):39Google Scholar
  5. 5.
    Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM (2006) Proc Natl Acad Sci U S A 103(25):9482–9487Google Scholar
  6. 6.
    Tom Dieck S, Kochen L, Hanus C, Heumuller M, Bartnik N-AB, Merk K, Mosler T, Garg S, Bunse S, Tirrell DA, Schuman EM (2015) Nat Methods 12:411–414Google Scholar
  7. 7.
    Hodas JJ, Nehring A, Hoche N, Sweredoski MJ, Pielot R, Hess S, Tirrell DA, Dieterich DC, Schuman EM (2012) Proteomics 12(15–16):2464–2476Google Scholar
  8. 8.
    Bowling H, Bhattacharya A, Zhang G, Lebowitz JZ, Alam D, Smith PT, Kirshenbaum K, Neubert TA, Vogel C, Chao MV, Klann E (2015) BONLAC. Neuropharmacology 100:76–89Google Scholar
  9. 9.
    Schanzenbacher CT, Sambandan S, Langer JD, Schuman EM (2016) Neuron 92:358–371Google Scholar
  10. 10.
    Hinz FI, Dieterich DC, Tirrell DA, Schuman EM (2012) ACS Chem Nerosci 3(1):40–49Google Scholar
  11. 11.
    McClatchy DB, Ma Y, Liu C, Stein BD, Martinez-Bartolome S, Vasquez D, Heilberg K, Shaw RJ, Yates JR (2015) J Proteome Res 14:4815–4822Google Scholar
  12. 12.
    Dieterich DC, Hodas JJL, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) Nat Neurosci 13(7):897–905Google Scholar
  13. 13.
    Howden AJ, Geoghegan V, Katsch K, Efstathiou G, Bhushan B, Boutureira O, Thomas B, Trudgian DC, Kessler BM, Dieterich DC, Davis BG, Acuto O (2013) Nat Methods 10(4):343–346Google Scholar
  14. 14.
    Genheden M, Kenney JW, Johnston HE, Manousopoulou A, Garbis SD, Proud CG (2015) J Neurosci 35(3):972–984Google Scholar
  15. 15.
    Fortin DA, Srivastava T, Dwarakanath D, Pierre P, Nygaard S, Derkach VA, Soderling TR (2012) J Neurosci 32(24):8127–8137Google Scholar
  16. 16.
    Rappsilber J, Mann M, Ishihama Y (2007) Nat Protoc 2(8):1896–1906Google Scholar
  17. 17.
    Rappsilber et al (2007) Nat Protoc 7:971–980Google Scholar
  18. 18.
    Dieterich DC, Lee JJ, Link AJ, Graumann J, Tirrell DA, Schuman EM (2007) Nat Protoc 2(3):532–540Google Scholar
  19. 19.
    Bowling H, Zhang G, Bhattacharya A, PÕrez-Cuesta LM, Deinhardt K, Hoeffer CA, Neubert TA, Gan WB, Klann E, Chao MV (2014) Antipsychotics activate mTORC1-dependent translation to enhance neuronal morphological complexity. Sci Signal 7(308):ra4Google Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  1. 1.Klann Laboratory, Suite 1120-24, Center for Neural Science, New York UniversityNew YorkUSA

Personalised recommendations