Advertisement

Functional Analysis of Cortical Neuron Migration Using miRNA Silencing

  • Pierre-Paul Prévot
  • Marie-Laure Volvert
  • Alexander Deiters
  • Laurent Nguyen
Protocol
Part of the Neuromethods book series (NM, volume 128)

Abstract

MicroRNAs (miRNAs) are endogenous, single-stranded ~21-nucleotide-long noncoding RNAs that have emerged as key fine-tuning posttranscriptional regulators of gene expression. The validation of miRNA-target interactions in animal model systems is not trivial, especially in the developing cerebral cortex. Induction of miRNAs loss-of-function is the ideal way to study their physiological role in vivo. Although it has been accepted that the dramatic brain phenotype of the Dicer conditional knockout mouse resulted from loss of mature miRNAs, functional connections to individual miRNAs need to be carried out. In this chapter, we compare three methods that are currently used to promote the loss-of-function of selected miRNAs in the developing cerebral cortex: genetic knockouts, small molecule inhibitors, and miRNA sponges. As an example, we are presenting some data obtained with different miRNA-loss of function approaches that support a role for miR-22 and miR-124 in radial migration and multipolar–bipolar transition of cortical projection neurons. These distinct loss of function methods provide complementary information and results indicate that, depending of the scientific question, one can choose between these methods to analyze the role of selected miRNAs in cortical development.

Keywords:

miRNA Loss-of-function Corticogenesis Electroporation Small molecule inhibitor Sponge Dicer 

References

  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  2. 2.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419CrossRefPubMedGoogle Scholar
  4. 4.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366CrossRefPubMedGoogle Scholar
  5. 5.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234CrossRefPubMedGoogle Scholar
  6. 6.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379CrossRefPubMedGoogle Scholar
  7. 7.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Friedman RC, Burge CB (2014) MicroRNA target finding by comparative genomics. Methods Mol Biol 1097:457–476CrossRefPubMedGoogle Scholar
  9. 9.
    Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205CrossRefPubMedGoogle Scholar
  10. 10.
    Kawahara H, Imai T, Okano H (2012) MicroRNAs in neural stem cells and neurogenesis. Front Neurosci 6:30CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lang MF, Shi Y (2012) Dynamic roles of microRNAs in neurogenesis. Front Neurosci 6:71CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S et al (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30(45):14931–14936CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Volvert ML, Rogister F, Moonen G, Malgrange B, Nguyen L (2012) MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 19(10):1573–1581CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55(2):204–219CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hevner RF, Haydar TF (2012) The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. Cereb Cortex 22(2):465–468CrossRefPubMedGoogle Scholar
  16. 16.
    Germain N, Banda E, Grabel L (2010) Embryonic stem cell neurogenesis and neural specification. J Cell Biochem 111(3):535–542CrossRefPubMedGoogle Scholar
  17. 17.
    Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144CrossRefPubMedGoogle Scholar
  18. 18.
    Davis S, Lollo B, Freier S, Esau C (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34(8):2294–2304CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238(11):2800–2812CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nowakowski TJ, Mysiak KS, Pratt T, Price DJ (2011) Functional dicer is necessary for appropriate specification of radial glia during early development of mouse telencephalon. PLoS One 6(8):e23013CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579(26):5904–5910CrossRefPubMedGoogle Scholar
  23. 23.
    Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426(6968):845–849CrossRefPubMedGoogle Scholar
  24. 24.
    Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450CrossRefPubMedGoogle Scholar
  25. 25.
    Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX et al (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33(2):e17CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A et al (2004) MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36(10):1079–1083CrossRefPubMedGoogle Scholar
  27. 27.
    Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12(2):187–191CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289CrossRefPubMedGoogle Scholar
  29. 29.
    Shibata M, Kurokawa D, Nakao H, Ohmura T, Aizawa S (2008) MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28(41):10415–10421CrossRefPubMedGoogle Scholar
  30. 30.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500CrossRefPubMedGoogle Scholar
  31. 31.
    Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):W451–W454CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798CrossRefPubMedGoogle Scholar
  33. 33.
    Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434(7031):338–345CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ma Y, Yao N, Liu G, Dong L, Liu Y, Zhang M et al (2015) Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells. EMBO J 34(3):361–378CrossRefPubMedGoogle Scholar
  35. 35.
    Flemr M, Buhler M (2015) Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep 12(4):709–716CrossRefPubMedGoogle Scholar
  36. 36.
    Park CY, Choi YS, McManus MT (2010) Analysis of microRNA knockouts in mice. Hum Mol Genet 19(R2):R169–R175CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O et al (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136(3):551–564CrossRefPubMedGoogle Scholar
  38. 38.
    Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C et al (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20(11):1511–1524CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Volvert ML, Prevot PP, Close P, Laguesse S, Pirotte S, Hemphill J et al (2014) MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. Cell Rep 7(4):1168–1183CrossRefPubMedGoogle Scholar
  40. 40.
    Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T et al (2007) Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35(9):2885–2892CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Connelly CM, Uprety R, Hemphill J, Deiters A (2012) Spatiotemporal control of microRNA function using light-activated antagomirs. Mol Biosyst 8(11):2987–2993CrossRefPubMedGoogle Scholar
  42. 42.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726CrossRefPubMedGoogle Scholar
  43. 43.
    Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20(19):R858–R861CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Creppe C, Malinouskaya L, Volvert ML, Close P, Laguesse S, Gillard M et al (2010) Elongator orchestrates cerebral cortical neurogenesis. Med Sci 26(2):135–137Google Scholar
  45. 45.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedGoogle Scholar
  46. 46.
    Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43(9):854–859CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689CrossRefPubMedGoogle Scholar
  48. 48.
    Orom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141CrossRefPubMedGoogle Scholar
  49. 49.
    Thomas M, Deiters A (2013) MicroRNA miR-122 as a therapeutic target for oligonucleotides and small molecules. Curr Med Chem 20(29):3629–3640CrossRefPubMedGoogle Scholar
  50. 50.
    Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201(9):1367–1373CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hebert JM, McConnell SK (2000) Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 222(2):296–306CrossRefPubMedGoogle Scholar
  52. 52.
    Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R et al (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074CrossRefPubMedGoogle Scholar
  54. 54.
    Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246CrossRefPubMedGoogle Scholar
  55. 55.
    Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872CrossRefPubMedGoogle Scholar
  56. 56.
    Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci U S A 102(50):18017–18022CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838CrossRefPubMedGoogle Scholar
  58. 58.
    Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH et al (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102(45):16426–16431CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864CrossRefPubMedGoogle Scholar
  61. 61.
    Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477CrossRefPubMedGoogle Scholar
  62. 62.
    Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44(1):55–60CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pierre-Paul Prévot
    • 1
    • 2
  • Marie-Laure Volvert
    • 1
    • 2
  • Alexander Deiters
    • 3
  • Laurent Nguyen
    • 1
    • 2
  1. 1.Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R)University of LiègeLiègeBelgium
  2. 2.GIGA-NeurosciencesUniversity of LiègeLiègeBelgium
  3. 3.Department of ChemistryUniversity of PittsburghPittsburghUSA

Personalised recommendations