Skip to main content

Functional Analysis of Cortical Neuron Migration Using miRNA Silencing

  • Protocol
  • First Online:
MicroRNA Technologies

Part of the book series: Neuromethods ((NM,volume 128))

  • 590 Accesses

Abstract

MicroRNAs (miRNAs) are endogenous, single-stranded ~21-nucleotide-long noncoding RNAs that have emerged as key fine-tuning posttranscriptional regulators of gene expression. The validation of miRNA-target interactions in animal model systems is not trivial, especially in the developing cerebral cortex. Induction of miRNAs loss-of-function is the ideal way to study their physiological role in vivo. Although it has been accepted that the dramatic brain phenotype of the Dicer conditional knockout mouse resulted from loss of mature miRNAs, functional connections to individual miRNAs need to be carried out. In this chapter, we compare three methods that are currently used to promote the loss-of-function of selected miRNAs in the developing cerebral cortex: genetic knockouts, small molecule inhibitors, and miRNA sponges. As an example, we are presenting some data obtained with different miRNA-loss of function approaches that support a role for miR-22 and miR-124 in radial migration and multipolar–bipolar transition of cortical projection neurons. These distinct loss of function methods provide complementary information and results indicate that, depending of the scientific question, one can choose between these methods to analyze the role of selected miRNAs in cortical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    Article  CAS  PubMed  Google Scholar 

  5. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    Article  CAS  PubMed  Google Scholar 

  6. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  7. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friedman RC, Burge CB (2014) MicroRNA target finding by comparative genomics. Methods Mol Biol 1097:457–476

    Article  CAS  PubMed  Google Scholar 

  9. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  10. Kawahara H, Imai T, Okano H (2012) MicroRNAs in neural stem cells and neurogenesis. Front Neurosci 6:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lang MF, Shi Y (2012) Dynamic roles of microRNAs in neurogenesis. Front Neurosci 6:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S et al (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30(45):14931–14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Volvert ML, Rogister F, Moonen G, Malgrange B, Nguyen L (2012) MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 19(10):1573–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55(2):204–219

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hevner RF, Haydar TF (2012) The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. Cereb Cortex 22(2):465–468

    Article  PubMed  Google Scholar 

  16. Germain N, Banda E, Grabel L (2010) Embryonic stem cell neurogenesis and neural specification. J Cell Biochem 111(3):535–542

    Article  PubMed  Google Scholar 

  17. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144

    Article  CAS  PubMed  Google Scholar 

  18. Davis S, Lollo B, Freier S, Esau C (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34(8):2294–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238(11):2800–2812

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nowakowski TJ, Mysiak KS, Pratt T, Price DJ (2011) Functional dicer is necessary for appropriate specification of radial glia during early development of mouse telencephalon. PLoS One 6(8):e23013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579(26):5904–5910

    Article  CAS  PubMed  Google Scholar 

  23. Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426(6968):845–849

    Article  CAS  PubMed  Google Scholar 

  24. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450

    Article  CAS  PubMed  Google Scholar 

  25. Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX et al (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33(2):e17

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A et al (2004) MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36(10):1079–1083

    Article  CAS  PubMed  Google Scholar 

  27. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12(2):187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289

    Article  CAS  PubMed  Google Scholar 

  29. Shibata M, Kurokawa D, Nakao H, Ohmura T, Aizawa S (2008) MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28(41):10415–10421

    Article  CAS  PubMed  Google Scholar 

  30. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  31. Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):W451–W454

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  33. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434(7031):338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma Y, Yao N, Liu G, Dong L, Liu Y, Zhang M et al (2015) Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells. EMBO J 34(3):361–378

    Article  CAS  PubMed  Google Scholar 

  35. Flemr M, Buhler M (2015) Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep 12(4):709–716

    Article  CAS  PubMed  Google Scholar 

  36. Park CY, Choi YS, McManus MT (2010) Analysis of microRNA knockouts in mice. Hum Mol Genet 19(R2):R169–R175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O et al (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136(3):551–564

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C et al (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20(11):1511–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Volvert ML, Prevot PP, Close P, Laguesse S, Pirotte S, Hemphill J et al (2014) MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. Cell Rep 7(4):1168–1183

    Article  CAS  PubMed  Google Scholar 

  40. Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T et al (2007) Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35(9):2885–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Connelly CM, Uprety R, Hemphill J, Deiters A (2012) Spatiotemporal control of microRNA function using light-activated antagomirs. Mol Biosyst 8(11):2987–2993

    Article  CAS  PubMed  Google Scholar 

  42. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726

    Article  CAS  PubMed  Google Scholar 

  43. Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20(19):R858–R861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Creppe C, Malinouskaya L, Volvert ML, Close P, Laguesse S, Gillard M et al (2010) Elongator orchestrates cerebral cortical neurogenesis. Med Sci 26(2):135–137

    Google Scholar 

  45. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  46. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43(9):854–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  Google Scholar 

  48. Orom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141

    Article  CAS  PubMed  Google Scholar 

  49. Thomas M, Deiters A (2013) MicroRNA miR-122 as a therapeutic target for oligonucleotides and small molecules. Curr Med Chem 20(29):3629–3640

    Article  CAS  PubMed  Google Scholar 

  50. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201(9):1367–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hebert JM, McConnell SK (2000) Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 222(2):296–306

    Article  CAS  PubMed  Google Scholar 

  52. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R et al (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074

    Article  CAS  PubMed  Google Scholar 

  54. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246

    Article  CAS  PubMed  Google Scholar 

  55. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872

    Article  CAS  PubMed  Google Scholar 

  56. Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci U S A 102(50):18017–18022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838

    Article  CAS  PubMed  Google Scholar 

  58. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH et al (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102(45):16426–16431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864

    Article  CAS  PubMed  Google Scholar 

  61. Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6):1469–1477

    Article  PubMed  Google Scholar 

  62. Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44(1):55–60

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Prévot, PP., Volvert, ML., Deiters, A., Nguyen, L. (2016). Functional Analysis of Cortical Neuron Migration Using miRNA Silencing. In: Kye, M. (eds) MicroRNA Technologies. Neuromethods, vol 128. Humana Press, New York, NY. https://doi.org/10.1007/7657_2016_13

Download citation

  • DOI: https://doi.org/10.1007/7657_2016_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7173-2

  • Online ISBN: 978-1-4939-7175-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics