Advertisement

Methods for Seizure Detection and Prediction: An Overview

  • Giorgos GiannakakisEmail author
  • Vangelis Sakkalis
  • Matthew Pediaditis
  • Manolis Tsiknakis
Protocol
Part of the Neuromethods book series (NM, volume 91)

Abstract

Epilepsy is one of the most common neurological diseases and the most common neurological chronic disease in childhood. Electroencephalography (EEG) still remains one of the most useful and effective tools in understanding and treatment of epilepsy. To this end, many computational methods have been developed for both the detection and prediction of epileptic seizures. Techniques derived from linear/nonlinear analysis, chaos, information theory, morphological analysis, model-based analysis, all present different advantages, disadvantages, and limitations. Recently, there is the notion of selecting and combining the most robust features from different methods for revealing various signals’ characteristics and making more reliable assumptions. Finally, intelligent classifiers are employed in order to distinguish epileptic state out of normal states. This chapter reviews the most widely adopted algorithms for the detection and prediction of epileptic seizures, emphasizing on information theory based and entropy indices. Each method’s accuracy has been evaluated through performance measures, assessing the ability of automatic seizure detection/prediction.

Keywords

EEG Epilepsy Seizure detection Seizure prediction Entropy Nonlinear analysis Morphological analysis Seizure modeling Classification 

References

  1. 1.
    Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472PubMedGoogle Scholar
  2. 2.
    World Health Organization (WHO) (2012) Report, fact sheet No 999, http://www.who.int/mediacentre/factsheets/fs999/en/index.html
  3. 3.
    Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS (2012) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Contr 7(4):401–408Google Scholar
  4. 4.
    Sakkalis V, Giurcaneanu CD, Xanthopoulos P, Zervakis ME, Tsiaras V, Yang Y, Karakonstantaki E, Micheloyannis S (2009) Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm. IEEE Trans Inform Tech Biomed 13(4):433–441Google Scholar
  5. 5.
    Winterhalder M, Maiwald T, Voss HU, Aschenbrenner-Scheibe R, Timmer J, Schulze-Bonhage A (2003) The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods. Epilepsy Behav 4(3):318–325PubMedGoogle Scholar
  6. 6.
    Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Paivinen N, Lammi S, Pitkanen A, Nissinen J, Penttonen M, Gronfors T (2005) Epileptic seizure detection: a nonlinear viewpoint. Comput Methods Programs Biomed 79(2):151–159PubMedGoogle Scholar
  8. 8.
    Faure P, Korn H (2001) Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C R Acad Sci III 324(9):773–793PubMedGoogle Scholar
  9. 9.
    Korn H, Faure P (2003) Is there chaos in the brain? II. Experimental evidence and related models. C R Biol 326(9):787–840PubMedGoogle Scholar
  10. 10.
    Liu A, Hahn JS, Heldt GP, Coen RW (1992) Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr Clin Neurophysiol 82(1):30–37PubMedGoogle Scholar
  11. 11.
    Altunay S, Telatar Z, Erogul O (2010) Epileptic EEG detection using the linear prediction error energy. Expert Syst Appl 37(8):5661–5665Google Scholar
  12. 12.
    Fathima T, Bedeeuzzaman M, Farooq O, Khan Y (2011) Wavelet based features for epileptic seizure detection. MES J Tech Manag 2(1):108–112Google Scholar
  13. 13.
    Yuan Q, Zhou W, Liu Y, Wang J (2012) Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav 24(4):415–421PubMedGoogle Scholar
  14. 14.
    Musselman M, Djurdjanovic D (2012) Time-frequency distributions in the classification of epilepsy from EEG signals. Expert Syst Appl 39(13):11413–11422Google Scholar
  15. 15.
    Hassanpour H, Mesbah M, Boashash B (2004) Time-frequency based newborn EEG seizure detection using low and high frequency signatures. Physiol Meas 25(4):935–944PubMedGoogle Scholar
  16. 16.
    Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 2007:80510PubMedCentralGoogle Scholar
  17. 17.
    Tzallas AT, Tsipouras MG, Fotiadis DI (2007) The use of time-frequency distributions for epileptic seizure detection in EEG recordings. 29th annual international conference of the IEEE engineering in medicine and biology society, 23–26 Aug 2007, pp 3–6Google Scholar
  18. 18.
    Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710PubMedGoogle Scholar
  19. 19.
    Khlif MS, Mesbah M, Boashash B, Colditz P (2007) Multichannel-based newborn EEG seizure detection using time-frequency matched filter. 29th annual international conference of the IEEE engineering in medicine and biology society, pp 1265–1268Google Scholar
  20. 20.
    Boashash B, Mesbah M, Golditz P (2003) Time-frequency detection of EEG abnormalities. Elsevier, Amsterdam, pp 663–669Google Scholar
  21. 21.
    Rankine L, Mesbah M, Boashash B (2007) A matching pursuit-based signal complexity measure for the analysis of newborn EEG. Med Biol Eng Comput 45(3):251–260PubMedGoogle Scholar
  22. 22.
    Nagaraj SB, Stevenson N, Marnane W, Boylan G, Lightbody G (2012) A novel dictionary for neonatal EEG seizure detection using atomic decomposition. 34th annual international conference of the IEEE engineering in medicine and biology society, pp 1073–1076Google Scholar
  23. 23.
    Sabesan S, Chakravarthy N, Tsakalis K, Pardalos P, Iasemidis L (2009) Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques. J Combin Optim 17(1):74–97Google Scholar
  24. 24.
    Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10):2266–2301PubMedGoogle Scholar
  25. 25.
    Esteller R, Vachtsevanos G, Echauz J, Litt B (2001) A comparison of waveform fractal dimension algorithms. IEEE Trans Circ Syst Fund Theor Appl 48(2):177–183Google Scholar
  26. 26.
    Sarkar N, Chaudhuri BB (1994) An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans Syst Man Cybern 24(1):115–120Google Scholar
  27. 27.
    Katz MJ (1988) Fractals and the analysis of waveforms. Comput Biol Med 18(3):145–156PubMedGoogle Scholar
  28. 28.
    Petrosian A (1995) Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. Proceedings of the eighth IEEE symposium on computer-based medical systems, Lubbock, TX, pp 212–217Google Scholar
  29. 29.
    Higuchi T (1988) Approach to an irregular time-series on the basis of the fractal theory. Physica D 31(2):277–283Google Scholar
  30. 30.
    Güler NF, Übeyli ED, Güler İ (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 29(3):506–514Google Scholar
  31. 31.
    Kannathal N, Acharya UR, Lim CM, Sadasivan PK (2005) Characterization of EEG—a comparative study. Comput Methods Programs Biomed 80(1):17–23PubMedGoogle Scholar
  32. 32.
    Kannathal N, Choo ML, Acharya UR, Sadasivan PK (2005) Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 80(3):187–194PubMedGoogle Scholar
  33. 33.
    Kumar SP, Sriraam N, Benakop PG, Jinaga BC (2010) Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst Appl 37(4):3284–3291Google Scholar
  34. 34.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423Google Scholar
  35. 35.
    Bruhn J, Lehmann LE, Ropcke H, Bouillon TW, Hoeft A (2001) Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiology 95(1):30–35PubMedGoogle Scholar
  36. 36.
    Steuer R, Ebeling W, Bengner T, Dehnicke C, Hattig H, Meencke H-J (2004) Entropy and complexity analysis of intracranially recorded EEG. Int J Bifurcat Chaos 14(02):815–823Google Scholar
  37. 37.
    Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katsuda Y, Hirano M (1991) Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol 79(3):204–210PubMedGoogle Scholar
  38. 38.
    Inouye T, Shinosaki K, Iyama A, Matsumoto Y (1993) Localization of activated areas and directional EEG patterns during mental arithmetic. Electroencephalogr Clin Neurophysiol 86(4):224–230PubMedGoogle Scholar
  39. 39.
    He Z-y, Chen X, Luo G (2006) Wavelet entropy measure definition and its application for transmission line fault detection and identification (part I: definition and methodology). International conference on power system technology, PowerCon 2006, Chongqing, 22–26 Oct 2006, pp 1–6Google Scholar
  40. 40.
    Powell GE, Percival IC (1979) A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems. J Phys Math Gen 12(11):2053–2071Google Scholar
  41. 41.
    Blanco S, Garay A, Coulombie D (2013) Comparison of frequency bands using spectral entropy for epileptic seizure prediction. ISRN Neurol 2013:5Google Scholar
  42. 42.
    Bezerianos A, Tong S, Thakor N (2003) Time-dependent entropy estimation of EEG rhythm changes following brain ischemia. Ann Biomed Eng 31(2):221–232PubMedGoogle Scholar
  43. 43.
    Zygierewicz J, Durka PJ, Klekowicz H, Franaszczuk PJ, Crone NE (2005) Computationally efficient approaches to calculating significant ERD/ERS changes in the time-frequency plane. J Neurosci Methods 145(1–2):267–276PubMedGoogle Scholar
  44. 44.
    Cohen L (1995) Time–frequency analysis. Prentice Hall, New York, NYGoogle Scholar
  45. 45.
    Quian Quiroga R, Rosso OA, Basar E (1999) Wavelet entropy: a measure of order in evoked potentials. Electroencephalogr Clin Neurophysiol Suppl 49:298–302Google Scholar
  46. 46.
    Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schurmann M, Basar E (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods 105(1):65–75PubMedGoogle Scholar
  47. 47.
    Quiroga RQ, Rosso OA, Basar E, Schurmann M (2001) Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations. Biol Cybern 84(4):291–299PubMedGoogle Scholar
  48. 48.
    Giannakakis GA, Tsiaparas NN, Xenikou MFS, Papageorgiou C, Nikita KS (2008) Wavelet entropy differentiations of event related potentials in dyslexia. 8th IEEE international conference on bioinformatics and bioengineering, Athens, 8–10 Oct 2008, pp 1–6Google Scholar
  49. 49.
    Hornero R, Abasolo DE, Espino P (2003) Use of wavelet entropy to compare the EEG background activity of epileptic patients and control subjects. The proceedings seventh international symposium on signal processing and its applications, vol 2, 1–4 July 2003, pp 5–8Google Scholar
  50. 50.
    Li X (2006) Wavelet spectral entropy for indication of epileptic seizure in extracranial EEG. In: King I, Wang J, Chan L-W, Wang D (eds) Neural information processing. Springer, Berlin, pp 66–73Google Scholar
  51. 51.
    Mirzaei A, Ayatollahi A, Gifani P, Salehi L (2010) EEG analysis based on wavelet-spectral entropy for epileptic seizures detection. 3rd international conference on proceedings of biomedical engineering and informatics (BMEI), Yantai, 16–18 Oct 2010, pp 878–882Google Scholar
  52. 52.
    Rosso OA, Blanco S, Rabinowicz A (2003) Wavelet analysis of generalized tonic-clonic epileptic seizures. Signal Process 83(6):1275–1289Google Scholar
  53. 53.
    Jones DL, Baraniuk RG (1995) An adaptive optimal-kernel time-frequency representation. IEEE Trans Signal Process 43(10):2361–2371Google Scholar
  54. 54.
    Cohen L (1989) Time frequency-distributions—a review. Proc IEEE 77(7):941–981Google Scholar
  55. 55.
    Giannakakis GA, Tsiaparas NN, Papageorgiou C, Nikita KS (2009) Spectral entropy of dyslexic ERP signal by means of adaptive optimal kernel. 16th international conference on digital signal processing, Santorini, Greece, 5–7 July 2009, pp 1–6Google Scholar
  56. 56.
    Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 88(6):2297–2301PubMedCentralPubMedGoogle Scholar
  57. 57.
    Kolmogorov AN (1958) New metric invariant of transitive dynamical systems and endomorphisms of lebesgue spaces. Doklady Russ Acad Sci Phys 119(N5):861–864Google Scholar
  58. 58.
    Bein B (2006) Entropy. Best Pract Res Clin Anaesthesiol 20(1):101–109PubMedGoogle Scholar
  59. 59.
    Pincus SM, Cummins TR, Haddad GG (1993) Heart-rate control in normal and aborted sids infants. Am J Physiol 264(3):R638–R646PubMedGoogle Scholar
  60. 60.
    Pincus SM, Goldberger AL (1994) Physiological time-series analysis—what does regularity quantify. Am J Physiol 266(4):H1643–H1656PubMedGoogle Scholar
  61. 61.
    Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049PubMedGoogle Scholar
  62. 62.
    Kim WS, Yoon YZ, Bae JH, Soh KS (2005) Nonlinear characteristics of heart rate time series: influence of three recumbent positions in patients with mild or severe coronary artery disease. Physiol Meas 26(4):517–529PubMedGoogle Scholar
  63. 63.
    Pincus SM, Mulligan T, Iranmanesh A, Gheorghiu S, Godschalk M, Veldhuis JD (1996) Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males. Proc Natl Acad Sci U S A 93(24):14100–14105PubMedCentralPubMedGoogle Scholar
  64. 64.
    Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural network’s. IEEE Trans Inf Technol Biomed 11(3):288–295PubMedGoogle Scholar
  65. 65.
    Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036Google Scholar
  66. 66.
    Zhou Y, Huang RM, Chen ZY, Chang X, Chen JL, Xie LL (2012) Application of approximate entropy on dynamic characteristics of epileptic absence seizure. Neural Regen Res 7(8):572–577Google Scholar
  67. 67.
    Guo L, Rivero D, Pazos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193(1):156–163PubMedGoogle Scholar
  68. 68.
    Giannakakis G, Sakkalis V, Pediaditis M, Farmaki C, Vorgia P, Tsiknakis M (2013) An approach to absence epileptic seizures detection using approximate entropy. 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Osaka, Japan, 3–7 July 2013, pp 413–416Google Scholar
  69. 69.
    Abásolo D, Hornero R, Espino P, Álvarez D, Poza J (2006) Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol Meas 27(3):241PubMedGoogle Scholar
  70. 70.
    Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 210(2):132–146PubMedGoogle Scholar
  71. 71.
    Molteni E, Perego P, Zanotta N, Reni G (2008) Entropy analysis on EEG signal in a case study of focal myoclonus. Conf Proc IEEE Eng Med Biol Soc 2008:4724–4727PubMedGoogle Scholar
  72. 72.
    Abásolo D, Muñoz D, Espino P (2012) Kullback-leibler entropy analysis of the electroencephalogram background activity in Alzheimer’s disease patients. In: The proceedings of 9th IASTED international conference on biomedical engineering, BioMed 2012, pp 43–46Google Scholar
  73. 73.
    Quiroga RQ, Arnhold J, Lehnertz K, Grassberger P (2000) Kulback-Leibler and renormalized entropies: applications to electroencephalograms of epilepsy patients. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62(6):8380–8386PubMedGoogle Scholar
  74. 74.
    Abasolo D, James CJ, Hornero R (2007) Non-linear analysis of intracranial electroencephalogram recordings with approximate entropy and Lempel-Ziv complexity for epileptic seizure detection. Conf Proc IEEE Eng Med Biol Soc 2007:1953–1956PubMedGoogle Scholar
  75. 75.
    James CJ, Abasolo D, Gupta D (2007) Space-time ICA versus Ensemble ICA for ictal EEG analysis with component differentiation via Lempel-Ziv complexity. Conf Proc IEEE Eng Med Biol Soc 2007:5473–5476PubMedGoogle Scholar
  76. 76.
    Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102PubMedGoogle Scholar
  77. 77.
    Li XL, Ouyang GX, Richards DA (2007) Predictability analysis of absence seizures with permutation entropy. Epilepsy Res 77(1):70–74PubMedGoogle Scholar
  78. 78.
    Ouyang G, Dang C, Richards DA, Li X (2010) Ordinal pattern based similarity analysis for EEG recordings. Clin Neurophysiol 121(5):694–703PubMedGoogle Scholar
  79. 79.
    Sakkalis V, Giannakakis G, Farmaki C, Mousas A, Pediaditis M, Vorgia P, Tsiknakis M (2013) Absence seizure epilepsy detection using linear and nonlinear EEG analysis methods. 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Osaka, Japan, 3–7 July 2013, pp 6333–6336Google Scholar
  80. 80.
    Deburchgraeve W, Cherian PJ, De Vos M, Swarte RM, Blok JH, Visser GH, Govaert P, Van Huffel S (2008) Automated neonatal seizure detection mimicking a human observer reading EEG. Clin Neurophysiol 119(11):2447–2454PubMedGoogle Scholar
  81. 81.
    Nonclercq A, Foulon M, Verheulpen D, De Cock C, Buzatu M, Mathys P, Van Bogaert P (2009) Spike detection algorithm automatically adapted to individual patients applied to spike-and-wave percentage quantification. Neurophysiol Clin 39(2):123–131PubMedGoogle Scholar
  82. 82.
    Adjouadi M, Sanchez D, Cabrerizo M, Ayala M, Jayakar P, Yaylali I, Barreto A (2004) Interictal spike detection using the Walsh transform. IEEE Trans Biomed Eng 51(5):868–872PubMedGoogle Scholar
  83. 83.
    Adjouadi M, Cabrerizo M, Ayala M, Sanchez D, Yaylali I, Jayakar P, Barreto A (2005) Detection of interictal spikes and artifactual data through orthogonal transformations. J Clin Neurophysiol 22(1):53–64PubMedGoogle Scholar
  84. 84.
    Pediaditis M, Tsiknakis M, Vorgia P, Kafetzopoulos D, Danilatou V, Fotiadis D (2010) Vision-based human motion analysis in epilepsy—methods and challenges. 10th IEEE international conference on information technology and applications in biomedicine (ITAB), Corfu, 3–5 Nov 2010, pp 1–5Google Scholar
  85. 85.
    Pediaditis M, Tsiknakis M, Leitgeb N (2012) Vision-based motion detection, analysis and recognition of epileptic seizures-A systematic review. Comput Methods Programs Biomed 108(3):1133–1148PubMedGoogle Scholar
  86. 86.
    Viglione SS, Walsh GO (1975) Epileptic seizure prediction. Electroencephalogr Clin Neurophysiol 39:435–436PubMedGoogle Scholar
  87. 87.
    Rogowski Z, Gath I, Bental E (1981) On the prediction of epileptic seizures. Biol Cybern 42(1):9–15PubMedGoogle Scholar
  88. 88.
    Gotman J, Ives JR, Gloor P, Olivier A, Quesney LF (1982) Changes in interictal eeg spiking and seizure occurrence in humans. Epilepsia 23(4):432–433Google Scholar
  89. 89.
    Mormann F, Kreuz T, Rieke C, Andrzejak RG, Kraskov A, David P, Elger CE, Lehnertz K (2005) On the predictability of epileptic seizures. Clin Neurophysiol 116(3):569–587PubMedGoogle Scholar
  90. 90.
    van Drongelen W, Nayak S, Frim DM, Kohrman MH, Towle VL, Lee HC, McGee AB, Chico MS, Hecox KE (2003) Seizure anticipation in pediatric epilepsy: use of Kolmogorov entropy. Pediatr Neurol 29(3):207–213PubMedGoogle Scholar
  91. 91.
    McSharry PE, Smith LA, Tarassenko L (2003) Comparison of predictability of epileptic seizures by a linear and a nonlinear method. IEEE Trans Biomed Eng 50(5):628–633PubMedGoogle Scholar
  92. 92.
    Hjorth B (1970) EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29(3):306–310PubMedGoogle Scholar
  93. 93.
    Park Y, Luo L, Parhi KK, Netoff T (2011) Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52(10):1761–1770PubMedGoogle Scholar
  94. 94.
    Litt B, Esteller R, Echauz J, D'Alessandro M, Shor R, Henry T, Pennell P, Epstein C, Bakay R, Dichter M, Vachtsevanos G (2001) Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30(1):51–64PubMedGoogle Scholar
  95. 95.
    Maiwald T, Winterhalder M, Aschenbrenner-Scheibe R, Voss HU, Schulze-Bonhage A, Timmer J (2004) Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic. Physica D-Nonlinear Phenomena 194(3–4):357–368Google Scholar
  96. 96.
    Gigola S, Ortiz F, D’Attellis CE, Silva W, Kochen S (2004) Prediction of epileptic seizures using accumulated energy in a multiresolution framework. J Neurosci Methods 138(1–2):107–111PubMedGoogle Scholar
  97. 97.
    Chisci L, Mavino A, Perferi G, Sciandrone M, Anile C, Colicchio G, Fuggetta F (2010) Real-time epileptic seizure prediction using AR models and support vector machines. IEEE Trans Biomed Eng 57(5):1124–1132PubMedGoogle Scholar
  98. 98.
    Iasemidis LD, Shiau DS, Chaovalitwongse W, Sackellares JC, Pardalos PM, Principe JC, Carney PR, Prasad A, Veeramani B, Tsakalis K (2003) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627PubMedGoogle Scholar
  99. 99.
    Iasemidis LD, Shiau DS, Sackellares JC, Pardalos PA, Prasad A (2004) Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans Biomed Eng 51(3):493–506PubMedGoogle Scholar
  100. 100.
    Iasemidis LD, Sackellares JC, Zaveri HP, Williams WJ (1990) Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr 2(3):187–201PubMedGoogle Scholar
  101. 101.
    Van Quyen ML, Martinerie J, Baulac M, Varela F (1999) Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. Neuroreport 10(10):2149–2155Google Scholar
  102. 102.
    Le Van Quyen M, Adam C, Martinerie J, Baulac M, Clemenceau S, Varela F (2000) Spatio-temporal characterizations of non-linear changes in intracranial activities prior to human temporal lobe seizures. Eur J Neurosci 12(6):2124–2134PubMedGoogle Scholar
  103. 103.
    Le Van Quyen M, Martinerie J, Navarro V, Boon P, D'Have M, Adam C, Renault B, Varela F, Baulac M (2001) Anticipation of epileptic seizures from standard EEG recordings. Lancet 357(9251):183–188PubMedGoogle Scholar
  104. 104.
    Navarro V, Martinerie J, Quyen MLV, Clemenceau S, Adam C, Baulac M, Varela F (2002) Seizure anticipation in human neocortical partial epilepsy. Brain 125(3):640–655PubMedGoogle Scholar
  105. 105.
    Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349Google Scholar
  106. 106.
    Lehnertz K, Andrzejak RG, Arnhold J, Kreuz T, Mormann F, Rieke C, Widman G, Elger CE (2001) Nonlinear EEG analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention. J Clin Neurophysiol 18(3):209–222PubMedGoogle Scholar
  107. 107.
    Aschenbrenner-Scheibe R, Maiwald T, Winterhalder M, Voss HU, Timmer J, Schulze-Bonhage A (2003) How well can epileptic seizures be predicted? An evaluation of a nonlinear method. Brain 126:2616–2626PubMedGoogle Scholar
  108. 108.
    Zandi AS, Dumont GA, Javidan M, Tafreshi R (2009) An entropy-based approach to predict seizures in temporal lobe epilepsy using scalp EEG. Conf Proc IEEE Eng Med Biol Soc 2009:228–231PubMedGoogle Scholar
  109. 109.
    Lee H, Kohrman M, Hecox K, Drongelen W (2013) Seizure prediction. In: He B (ed) Neural engineering. Springer, New York, NYGoogle Scholar
  110. 110.
    Zhang L-Y (2009) Kolmogorov entropy changes and cortical lateralization during complex problem solving task measured with EEG. J Biomed Sci Eng 2(8):661–664Google Scholar
  111. 111.
    Mormann F, Andrzejak RG, Kreuz T, Rieke C, David P, Elger CE, Lehnertz K (2003) Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients. Phys Rev E Stat Nonlin Soft Matter Phys 67(2):021912PubMedGoogle Scholar
  112. 112.
    Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE (2003) Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53(3):173–185PubMedGoogle Scholar
  113. 113.
    Lehnertz K, Mormann F, Kreuz T, Andrzejak RG, Rieke C, David P, Elger CE (2003) Seizure prediction by nonlinear EEG analysis. IEEE Eng Med Biol Mag 22(1):57–63PubMedGoogle Scholar
  114. 114.
    Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144(3–4):358–369Google Scholar
  115. 115.
    Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422Google Scholar
  116. 116.
    Guyon I, Aliferis C, Cooper G, Elisseeff A, Pellet J-P, Spirtes P, Statnikov A (2008) Design and analysis of the causation and prediction challenge. WCCI workshop on causalityGoogle Scholar
  117. 117.
    Temko A, Thomas E, Marnane W, Lightbody G, Boylan G (2011) EEG-based neonatal seizure detection with support vector machines. Clin Neurophysiol 122(3):464–473PubMedCentralPubMedGoogle Scholar
  118. 118.
    Pukelsheim F (1994) The three sigma rule. Am Stat 48(2):88–91Google Scholar
  119. 119.
    Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187(2):1017–1026Google Scholar
  120. 120.
    Srinivasan V, Eswaran C, Sriraam N (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst 29(6):647–660PubMedGoogle Scholar
  121. 121.
    Ghosh-Dastidar S, Adeli H, Dadmehr N (2007) Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 54(9):1545–1551PubMedGoogle Scholar
  122. 122.
    Übeyli ED (2010) Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst Appl 37(2):985–992Google Scholar
  123. 123.
    Chandaka S, Chatterjee A, Munshi S (2009) Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst Appl 36(2, Part 1):1329–1336Google Scholar
  124. 124.
  125. 125.
    The European Epilepsy Database. http://epilepsy-database.eu
  126. 126.
    Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlin Soft Matter Phys 64(6):061907PubMedGoogle Scholar
  127. 127.
    Gautama T, Mandic DP, Van Hulle MM (2003) Indications of nonlinear structures in brain electrical activity. Phys Rev E Stat Nonlin Soft Matter Phys 67(4 Pt 2): 046204PubMedGoogle Scholar
  128. 128.
    Nigam VP, Graupe D (2004) A neural-network-based detection of epilepsy. Neurol Res 26(1):55–60PubMedGoogle Scholar
  129. 129.
    Guler I, Ubeyli ED (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 148(2):113–121PubMedGoogle Scholar
  130. 130.
    Güler İ, Übeyli̇ ED (2007) Expert systems for time-varying biomedical signals using eigenvector methods. Expert Syst Appl 32(4):1045–1058Google Scholar
  131. 131.
    Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093Google Scholar
  132. 132.
    Polat K, Gunes S (2008) Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Syst Appl 34(3):2039–2048Google Scholar
  133. 133.
    Ghosh-Dastidar S, Adeli H, Dadmehr N (2008) Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng 55(2):512–518PubMedGoogle Scholar
  134. 134.
    Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A (2010) Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods 191(1):101–109PubMedGoogle Scholar
  135. 135.
    Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A (2011) Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst Appl 38(8):10425–10436Google Scholar
  136. 136.
    Martis RJ, Acharya UR, Tan JH, Petznick A, Yanti R, Chua CK, Ng EY, Tong L (2012) Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals. Int J Neural Syst 22(6):1250027PubMedGoogle Scholar
  137. 137.
    Alkan A, Koklukaya E, Subasi A (2005) Automatic seizure detection in EEG using logistic regression and artificial neural network. J Neurosci Methods 148(2):167–176PubMedGoogle Scholar
  138. 138.
    Greene BR, Boylan GB, Reilly RB, de Chazal P, Connolly S (2007) Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin Neurophysiol 118(6):1348–1359PubMedGoogle Scholar
  139. 139.
    Vukkadala S, Vijayalakshmi S, Vijayapriya S (2009) Automated detection of epileptic EEG using approximate entropy in elman networks. Int J Recent Trends Eng 1(1):307–312Google Scholar
  140. 140.
    Zhou W, Liu Y, Yuan Q, Li X (2013) Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans Biomed Eng 60(12):3375–3381Google Scholar
  141. 141.
    Yacoob Y, Davis LS (1996) Recognizing human facial expressions from long image sequences using optical flow. IEEE Trans Pattern Anal Mach Intell 18(6):636–642Google Scholar
  142. 142.
    Schad A, Schindler K, Schelter B, Maiwald T, Brandt A, Timmer J, Schulze-Bonhage A (2008) Application of a multivariate seizure detection and prediction method to non-invasive and intracranial long-term EEG recordings. Clin Neurophysiol 119(1):197–211PubMedGoogle Scholar
  143. 143.
    James CJ, Gupta D (2009) Seizure prediction for epilepsy using a multi-stage phase synchrony based system. Conf Proc IEEE Eng Med Biol Soc 2009:25–28. doi: 10.1109/IEMBS.2009.5334898 PubMedGoogle Scholar
  144. 144.
    Lombroso CT (1996) Neonatal seizures: a clinician’s overview. Brain Dev 18(1):1–28PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Giorgos Giannakakis
    • 1
    Email author
  • Vangelis Sakkalis
    • 1
  • Matthew Pediaditis
    • 1
  • Manolis Tsiknakis
    • 1
    • 2
  1. 1.Foundation for Research and Technology Hellas, Institute of Computer ScienceHeraklionGreece
  2. 2.Department of Informatics EngineeringTechnological Educational Institute of Crete EstavromenosHeraklionGreece

Personalised recommendations