Advertisement

Operational Architectonics Methodology for EEG Analysis: Theory and Results

  • Andrew A. FingelkurtsEmail author
  • Alexander A. Fingelkurts
Protocol
Part of the Neuromethods book series (NM, volume 91)

Abstract

This chapter discusses various aspects of operational architectonics methodology for EEG analysis that have been developed over the course of last 17 years in relation to nonstationarity of brain functioning. At first we detail the peculiarities and evidence for a spatial and temporal nonstationarity in the EEG signal, then we review a theoretical framework that could integrate the existing data with a focus on theoretical advantages provided by an operational architectonics framework, and finally we describe the experimental results related to methodology. In the last part of the chapter we outline the application of OA methodology to clinical, pharmacological, cognitive, and neurophilosophical studies.

Key words

Electroencephalography (EEG) Nonstationarity Spontaneous brain activity Neuronal assemblies Brain operations Operational module (OM) Rapid transitional process (RTP) Operational synchrony (OS) Functional synchrony Operational architectonics (OA) 

Notes

Acknowledgments

This work was supported by BM-Science Centre, Finland. The authors would like to thank anonymous reviewers who provided thoughtful comments and constructive criticism. Special thanks for English editing to Dmitry Skarin.

References

  1. 1.
    Kunkel H (1980) Elektroenzephalographie und psychiatrie. In: Kisker KP, Meyer JE, Müller C, Strömgren E (eds) Psychiatrie der Gegenwart Bd. Springer, Berlin, pp 115–196Google Scholar
  2. 2.
    Kuffler SW, Potter DD (1964) Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J Neurophysiol 27:290–320PubMedGoogle Scholar
  3. 3.
    Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29(4):788–806PubMedGoogle Scholar
  4. 4.
    Elul R (1972) The genesis of the EEG. Int Rev Neurobiol 15:227–272Google Scholar
  5. 5.
    Kuffler SW (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc Lond B Biol Sci 168:1–21PubMedGoogle Scholar
  6. 6.
    Elul R (1967) Statistical mechanisms in generation of the EEG. Program Biomed Eng 1:131–150Google Scholar
  7. 7.
    Elul R (1968) Brain waves: intracellular recording and statistical analysis help clarify their physiological significance. In: Enslein K (ed) Data acquisition and processing in biology and medicine. Pergamon Press, Oxford, pp 93–115Google Scholar
  8. 8.
    Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79:81–93PubMedGoogle Scholar
  9. 9.
    Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New YorkGoogle Scholar
  10. 10.
    Freeman WJ (1975) Mass action in the nervous system. Academic, New YorkGoogle Scholar
  11. 11.
    Başar E (1998) Brain function and oscillations I Brain oscillations: principles and approaches. Springer, BerlinGoogle Scholar
  12. 12.
    Andras P, Wennekers T (2007) Cortical activity pattern computation. Biosystems 87:179–185PubMedGoogle Scholar
  13. 13.
    Moran RJ, Stephan KE, Kiebel SJ et al (2008) Bayesian estimation of synaptic physiology from the spectral responses of neural-masses. NeuroImage 42:272–284PubMedCentralPubMedGoogle Scholar
  14. 14.
    Hadjipapas A, Casagrande E, Nevado A, Barnes GR, Green GG, Holliday IE (2009) Can we observe collective neuronal activity from macroscopic aggregate signals? NeuroImage 44:1290–1303PubMedGoogle Scholar
  15. 15.
    van Albada SJ, Kerr CC, Chiang AKI, Rennie CJ, Robinson PA (2010) Neurophysiological changes with age probed by inverse modelling of EEG spectra. Clin Neurophysiol 121(1):21–38PubMedGoogle Scholar
  16. 16.
    Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23(3):371–437PubMedGoogle Scholar
  17. 17.
    Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117(11):2424–2435PubMedCentralPubMedGoogle Scholar
  18. 18.
    Hughes JR, John ER (1999) Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 11:190–208PubMedGoogle Scholar
  19. 19.
    Salinsky MC, Oken BS, Morehead L (1991) Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79(5):382–392PubMedGoogle Scholar
  20. 20.
    Gasser T, Bacher P, Steinberg H (1985) Test–retest reliability of spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 60:312–319PubMedGoogle Scholar
  21. 21.
    Pollock VE, Schneider LS, Lyness SA (1991) Reliability of topographic quantitative EEG amplitude in healthy late-middle-aged and elderly subjects. Electroencephalogr Clin Neurophysiol 79:20–26PubMedGoogle Scholar
  22. 22.
    Burgess A, Gruzelier J (1993) Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalogr Clin Neurophysiol 86:219–223PubMedGoogle Scholar
  23. 23.
    Harmony T, Fernandez T, Rodriguez M, Reyes A, Marosi E, Bernal J (1993) Test–retest reliability of EEG spectral parameters during cognitive tasks: II. Coherence. Int J Neurosci 68:263–271PubMedGoogle Scholar
  24. 24.
    Lund TR, Sponheim SR, Iacono WG, Clementz BA (1995) Internal consistency reliability of resting EEG power spectra in schizophrenic and normal subjects. Psychophysiology 32:66–71PubMedGoogle Scholar
  25. 25.
    Corsi-Cabrera M, Solis-Ortiz S, Guevara MA (1997) Stability of EEG inter- and intrahemispheric correlation in women. Electroencephalogr Clin Neurophysiol 102:248–255PubMedGoogle Scholar
  26. 26.
    Fingelkurts AA, Fingelkurts AA, Ermolaev VA, Kaplan AY (2006) Stability, reliability and consistency of the compositions of brain oscillations. Int J Psychophysiol 59:116–126PubMedGoogle Scholar
  27. 27.
    Stassen HH, Bomben G, Propping P (1987) Genetic aspects of the EEG: an investigation into the within-pair similarity of monozygotic and dizygotic twins with a new method of analysis. Electroencephalogr Clin Neurophysiol 66:489–501PubMedGoogle Scholar
  28. 28.
    Stassen HH, Bomben G, Hell D (1998) Familial brain wave patterns: study of a 12-sib family. Psychiatr Genet 8:141–153PubMedGoogle Scholar
  29. 29.
    van Beijsterveldt CEM, Molenaar PC, de Geus EJ, Boomsma DI (1996) Heritability of human brain functioning as assessed by electroencephalography. Am J Hum Genet 58:562–573PubMedCentralPubMedGoogle Scholar
  30. 30.
    Smit DJA, Posthuma D, Boomsma DI, de Geus EJC (2005) Heritability of background EEG across the power spectrum. Psychophysiology 42:691–697PubMedGoogle Scholar
  31. 31.
    van Beijsterveldt CEM, van Baal GCM (2002) Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol Psychol 61:111–138PubMedGoogle Scholar
  32. 32.
    Johnstone J, Gunkelman J, Lunt J (2005) Clinical database development: characterization of EEG phenotypes. Clin EEG Neurosci 36(2):99–107PubMedGoogle Scholar
  33. 33.
    Ehlers CL, Phillips E, Gizer IR, Gilder DA, Wilhelmsen KC (2010) EEG spectral phenotypes: heritability and association with marijuana and alcohol dependence in an American Indian community study. Drug Alcohol Depend 106:101–110PubMedCentralPubMedGoogle Scholar
  34. 34.
    Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929PubMedGoogle Scholar
  35. 35.
    Başar E, Başar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248PubMedGoogle Scholar
  36. 36.
    Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716PubMedGoogle Scholar
  37. 37.
    Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480PubMedGoogle Scholar
  38. 38.
    Başar E (1992) Brain natural frequencies are causal factors for resonances and induced rhythms. (Epilogue). In: Başar E, Bullock TH (eds) Induced rhythms in the brain. Birkhauser, Boston, MA, pp 425–467Google Scholar
  39. 39.
    Başar E (2008) Oscillations in “brain–body–mind”—a holistic view including the autonomous system. Brain Res 1235:2–11PubMedGoogle Scholar
  40. 40.
    Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedGoogle Scholar
  41. 41.
    Ilmoniemi RJ (2006) Transcranial magnetic stimulation. Wiley Encyclopedia of Biomedical Engineering, New YorkGoogle Scholar
  42. 42.
    Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci 13(4):182–189PubMedGoogle Scholar
  43. 43.
    McFadden J (2002) Synchronous firing and its influence on the brain’s electromagnetic field: evidence for an electromagnetic field theory of consciousness. J Conscious Stud 9(4):23–50Google Scholar
  44. 44.
    Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943–1946PubMedGoogle Scholar
  45. 45.
    Weiss SA, Faber DS (2010) Field effects in the CNS play functional roles. Front Neural Circuits 4:15PubMedCentralPubMedGoogle Scholar
  46. 46.
    Haken H (2006) Synergetics of brain function. Int J Psychophysiol 60:110–124PubMedGoogle Scholar
  47. 47.
    Bodunov MV (1988) The EEG “alphabet”: the typology of human EEG stationary segments. In: Rusalov VM (ed) Individual and psychological differences and bioelectrical activity of human brain. Nauka, Moscow, pp 56–70 (in Russian)Google Scholar
  48. 48.
    Jansen BH, Cheng W-K (1988) Structural EEG analysis: an explorative study. Int J Biomed Comput 23:221–237PubMedGoogle Scholar
  49. 49.
    Fingelkurts AA, Fingelkurts AA, Kaplan AY (2003) The regularities of the discrete nature of multi-variability of EEG spectral patterns. Int J Psychophysiol 47(1):23–41PubMedGoogle Scholar
  50. 50.
    Fingelkurts AA, Fingelkurts AA, Krause CM, Kaplan AY (2003) Systematic rules underlying spectral pattern variability: experimental results and a review of the evidences. Int J Neurosci 113:1447–1473PubMedGoogle Scholar
  51. 51.
    Kaplan AY (1998) Nonstationary EEG: methodological and experimental analysis. Usp Fiziol Nauk 29(3):35–55 (in Russian)PubMedGoogle Scholar
  52. 52.
    Kaplan AY, Shishkin SL (2000) Application of the change-point analysis to the investigation of the brain’s electrical activity. In: Brodsky BE, Darhovsky BS (eds) Non-parametric statistical diagnosis. Problems and methods. Kluwer Academic Publishers, Dordrecht, pp 333–388Google Scholar
  53. 53.
    Kaplan AY, Fingelkurts AA, Fingelkurts AA, Borisov SV, Darkhovsky BS (2005) Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process 85:2190–2212Google Scholar
  54. 54.
    Fingelkurts AA, Fingelkurts AA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2(3):261–296, http://www.bm-science.com/team/art18.pdf Google Scholar
  55. 55.
    Fingelkurts AA, Fingelkurts AA (2005) Mapping of the brain operational architectonics. In: Chen FJ (ed) Focus on brain mapping research. Nova Science Publishers Inc, New York, pp 59–98, http://www.bm-science.com/team/chapt3.pdf Google Scholar
  56. 56.
    Fingelkurts AA, Fingelkurts AA (2008) Brain-mind operational architectonics imaging: technical and methodological aspects. Open Neuroimag J 2:73–93PubMedCentralPubMedGoogle Scholar
  57. 57.
    Betzel RF, Erickson MA, Abell M, O’Donnell BF, Hetrick WP, Sporns O (2012) Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Front Comput Neurosci 6:74PubMedCentralPubMedGoogle Scholar
  58. 58.
    Berger H (1929) Über das Elektroenkephalogramm des Menschen. Arch Psychiatr 87:527–570, Translated and reprinted in Pierre Gloor, Hans Berger on the electroencephalogram of man. Electroencephalogr Clin Neurophysiol 1969; Supp. 28. Elsevier, AmsterdamGoogle Scholar
  59. 59.
    Miwakeichi F, Martinez-Montes E, Valdes-Sosa PA, Nishiyama N, Mizuhara H, Yamaguchia Y (2004) Decomposing EEG data into space–time–frequency components using Parallel Factor Analysis. NeuroImage 22:1035–1045PubMedGoogle Scholar
  60. 60.
    Lehmann D (1987) Principles of spatial analysis. In: Gevins AS, Remont A (eds) Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, pp 309–354Google Scholar
  61. 61.
    Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M (1998) Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol 29:1–11PubMedGoogle Scholar
  62. 62.
    Freeman WJ (1990) On the problem of anomalous dispersion in chaoto-chaotic phase transitions of neural masses, and its significance for the management of perceptual information in brains. In: Haken H, Stadler M (eds) Synergetics of cognition, vol 45. Springer, Berlin, pp 126–143Google Scholar
  63. 63.
    Kaplan AY, Fingelkurts AA, Fingelkurts AA, Ermolaev VA (1999) Topographic variability of the EEG spectral patterns. Fiziol Cheloveka 25(2):21–29 (in Russian)PubMedGoogle Scholar
  64. 64.
    Freeman WJ, Holmes MD (2005) Metastability, instability, and state transition in neocortex. Neural Netw 18:497–504PubMedGoogle Scholar
  65. 65.
    Freeman WJ, Vitiello G (2005) Nonlinear brain dynamics and many-body field dynamics. Electromagn Biol Med 24:233–241Google Scholar
  66. 66.
    Fingelkurts AA, Fingelkurts AA, Kaplan AY (2006) Interictal EEG as a physiological adaptation. Part II. Topographic variability of composition of brain oscillations in interictal EEG. Clin Neurophysiol 117(4):789–802PubMedGoogle Scholar
  67. 67.
    Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 107:18179–18184PubMedGoogle Scholar
  68. 68.
    Bodenstein G, Praetorius HM (1977) Feature extraction from the electroencephalogram by adaptive segmentation. Proc IEEE 65:642–652Google Scholar
  69. 69.
    Barlow JS (1985) Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review. J Clin Neurophysiol 2:267–304PubMedGoogle Scholar
  70. 70.
    Gersch W (1987) Non-stationary multichannel time series analysis. In: Gevins A (ed) EEG Handbook, Revised Series, vol 1. Academic, New YorkGoogle Scholar
  71. 71.
    Oken BS, Chiappa KH (1988) Short-term variability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 69(3):191–198PubMedGoogle Scholar
  72. 72.
    Shishkin SL, Brodsky BE, Darkhovsky BS, Kaplan AY (1997) EEG as a nonstationary signal: an approach to analysis based on nonparametric statistics. Fiziol Cheloveka 23(4):124–126 (in Russian)PubMedGoogle Scholar
  73. 73.
    Fingelkurts AA (1998) Time-spatial organization of the human EEG segmental structure. Ph.D. Dissertation. MSU, Moscow, Russian Federation, 401 p, (in Russian)Google Scholar
  74. 74.
    Klonowski W (2009) Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomed Phys 3:2. doi: 10.1186/1753-4631-3-2 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Freyer F, Aquino K, Robinson PA, Ritter P, Breakspear M (2009) Bistability and non-gaussian fluctuations in spontaneous cortical activity. J Neurosci 29:8512–8524PubMedGoogle Scholar
  76. 76.
    Latchoumane CFV, Jeong J (2010) Quantification of brain macrostates using dynamical non-stationarity of physiological time series. IEEE Trans Biomed Eng 58:1084–1093Google Scholar
  77. 77.
    Chu CJ, Kramer MA, Pathmanathan J et al (2012) Emergence of stable functional networks in long-term human electroencephalography. J Neurosci 32:2703–2713PubMedGoogle Scholar
  78. 78.
    Rusinov VS (1973) The dominant focus: electrophysiological investigations. Consultants Bureau, New York, p 220 (Translated from Russian)Google Scholar
  79. 79.
    Burov IV, Kaplan AY (1993) The effect of amiridin on the spectral characteristics of the human EEG. Eksp Klin Farmakol 56(5):5–8 (in Russian)PubMedGoogle Scholar
  80. 80.
    Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288PubMedGoogle Scholar
  81. 81.
    Brodsky BE, Darkhovsky BS, Kaplan AY, Shishkin SL (1999) A nonparametric method for the segmentation of the EEG. Comput Methods Programs Biomed 60:93–106PubMedGoogle Scholar
  82. 82.
    Fell J, Kaplan A, Darkhovsky B, Röschke J (2000) EEG analysis with nonlinear deterministic and stochastic methods: a combined strategy. Acta Neurobiol Exp 60:87–108Google Scholar
  83. 83.
    Fingelkurts AA, Fingelkurts AA, Kivisaari R, Pekkonen E, Ilmoniemi RJ, Kähkönen SA (2004) Local and remote functional connectivity of neocortex under the inhibition influence. NeuroImage 22(3):1390–1406PubMedGoogle Scholar
  84. 84.
    Fingelkurts AA, Fingelkurts AA, Kivisaari R, Pekkonen E, Ilmoniemi RJ, Kähkönen SA (2004) Enhancement of GABA-related signalling is associated with increase of functional connectivity in human cortex. Hum Brain Mapp 22(1):27–39PubMedGoogle Scholar
  85. 85.
    Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin Neurophysiol 115:2077–2088PubMedGoogle Scholar
  86. 86.
    Fingelkurts AA, Fingelkurts AA (2010) Alpha rhythm operational architectonics in the continuum of normal and pathological brain states: current state of research. Int J Psychophysiol 76:93–106PubMedGoogle Scholar
  87. 87.
    Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin Neurophysiol 115:2089–2107PubMedGoogle Scholar
  88. 88.
    Wallenstein GV, Kelso JSA, Bressler SL (1995) Phase transitions in spatiotemporal patterns of brain activity and behaviour. Physica D 84(3–4):626–634Google Scholar
  89. 89.
    Kozma R, Freeman WJ (2002) Classification of EEG patterns using nonlinear dynamics and identifying chaotic phase transitions. Neurocomputing 44:1107–1112Google Scholar
  90. 90.
    Puljic M, Kozma R (2003) Phase transitions in a probabilistic cellular neural network model having local and remote connections. International joint conference on neural networks IJCNN’2003, Portland, OR, 14–19 July 2003, p 831–835Google Scholar
  91. 91.
    Fingelkurts AA, Fingelkurts AA, Neves CFH (2010) Natural world physical, brain operational, and mind phenomenal space-time. Phys Life Rev 7(2):195–249PubMedGoogle Scholar
  92. 92.
    Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and nonlocal interactions. Biol Cybern 92:367–379PubMedGoogle Scholar
  93. 93.
    Thatcher RW, John ER (1977) Functional neuroscience. Vol. 1: foundations of cognitive processes. Lawrence Erlbaum, New YorkGoogle Scholar
  94. 94.
    Herscovitch P (1994) Radiotracer techniques for functional neuroimaging with positron emission tomography. In: Thatcher RW, Halletr M, Zeffro T, John ER, Huerta M (eds) Functional neuroimaging: technical foundations. Academic, San DiegoGoogle Scholar
  95. 95.
    Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871PubMedGoogle Scholar
  96. 96.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682PubMedCentralPubMedGoogle Scholar
  97. 97.
    Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage 37(4):1083–1090PubMedGoogle Scholar
  98. 98.
    Fingelkurts AA, Fingelkurts AA (2011) Persistent operational synchrony within brain default-mode network and self-processing operations in healthy subjects. Brain Cogn 75(2):79–90PubMedGoogle Scholar
  99. 99.
    Soroko SI, Suvorov NB, Bekshaev SS (1977) Voluntary control of the level of brain bioelectrical l activity as a method to study autoregulatory properties of CNA. In: Vasilevskii NN (ed), Adaptive self-regulation of functions. Мoscow: Meditsina, pp. 206–248Google Scholar
  100. 100.
    Bekshaev SS, Vasilevskii NN, Suvorov NB, Kutuev VB, Soroko SI (1978) Combined approach for analysis of temporal statistical structure of EEG rhythms. In: Adaptive reactions of the brain and their prognosis, p 117–123 (in Russian)Google Scholar
  101. 101.
    Soroko SI, Bekshaev SS (1981) EEG rhythms’ statistical structure and individual properties of brain self-regulation mechanisms. Fiziologich J 67:1765–1773 (in Russian)Google Scholar
  102. 102.
    Borisov SV, Kaplan AY, Gorbachevskaia NL, Kozlova IA (2005) Segmental structure of the EEG alpha activity in adolescents with disorders of schizophrenic spectrum. Zh Vyssh Nerv Deiat Im I P Pavlova 55(3):329–335 (in Russian)PubMedGoogle Scholar
  103. 103.
    Fingelkurts AA, Fingelkurts AA, Kaplan AY (2006) Interictal EEG as a physiological adaptation. Part I. Composition of brain oscillations in interictal EEG. Clin Neurophysiol 117:208–222PubMedGoogle Scholar
  104. 104.
    Fingelkurts AA, Fingelkurts AA, Rytsala H, Suominen K, Isometsa E, Kahkonen S (2006) Composition of brain oscillations in ongoing EEG during major depression disorder. Neurosci Res 56:133–144PubMedGoogle Scholar
  105. 105.
    Fingelkurts AA, Fingelkurts AA, Kivisaari R et al (2006) Reorganization of the composition of brain oscillations and their temporal characteristics in opioid dependent patients. Prog Neuropsychopharmacol Biol Psychiatry 30:1453–1465PubMedGoogle Scholar
  106. 106.
    Fingelkurts AA, Fingelkurts AA (2010) Short-term EEG spectral pattern as a single event in EEG phenomenology. Open Neuroimag J 4:130–156PubMedCentralPubMedGoogle Scholar
  107. 107.
    Manuca R, Savit R (1996) Stationarity and nonstationarity in time series analysis. J Phys D 99:134–161Google Scholar
  108. 108.
    Fingelkurts AA, Fingelkurts AA (2004) Making complexity simpler: multivariability and metastability in the brain. Int J Neurosci 114:843–862PubMedGoogle Scholar
  109. 109.
    Speckmann EJ, Elger CE (1998) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Williams and Wilkins, BaltimoreGoogle Scholar
  110. 110.
    Bullock TH (1997) Signals and signs in the nervous system: the dynamic anatomy of electrical activity. Proc Natl Acad Sci U S A 94:1–6PubMedCentralPubMedGoogle Scholar
  111. 111.
    Towle VL, Carder RK, Khorasani L, Lindber D (1999) Electro-corticographic coherence patterns. J Clin Neurophysiol 16:528–547PubMedGoogle Scholar
  112. 112.
    Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Fine spatiotemporal structure of phase in human intracranial EEG. Clin Neurophysiol 117:1228–1243PubMedGoogle Scholar
  113. 113.
    Sviderskaya NE, Shlitner LM (1990) Coherent cortical electric activity structures in the human brain. Fiziol Cheloveka 16(3):12–19 (in Russian)Google Scholar
  114. 114.
    Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104(32):13170–13175PubMedCentralPubMedGoogle Scholar
  115. 115.
    Chorlian DB, Rangaswamy M, Porjesz B (2009) EEG coherence: topography and frequency structure. Exp Brain Res 198:59–83PubMedGoogle Scholar
  116. 116.
    Hori H, Hayasaka K, Sato K, Harada O, Iwata H (1969) A study on phase relationship in human alpha activity. Correlation of different regions. Electroencephalogr Clin Neurophysiol 26:19–24PubMedGoogle Scholar
  117. 117.
    Ozaki H, Suzuki H (1986) Transverse relationships of the alpha rhythm on the scalp. Electroencephalogr Clin Neurophysiol 66:191–195Google Scholar
  118. 118.
    Thatcher RW, Krause P, Hrybyk M (1986) Corticocortical associations and EEG coherence: a two compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143PubMedGoogle Scholar
  119. 119.
    Bullock TH, Achimowicz JZ (1994) A comparative survey of oscillatory brain activity, especially gamma-band rhythms. In: Pantev C, Elbert T, Lukenhoner B (eds) Oscillatory event related brain dynamics. Plenum Publishing Corp, New York, pp 11–26Google Scholar
  120. 120.
    Bullock TH, McClune MC, Achimowicz JZ, Iragui-Madoz VJ, Duckrow RB, Spencer SS (1995) EEG coherence has structure in the millimeter domain: subdural and hippocampal recordings from epileptic patients. Electroencephalogr Clin Neurophysiol 95:161–177PubMedGoogle Scholar
  121. 121.
    Shen B, Nadkarni M, Zappulla RA (1999) Spectral modulation of cortical connections measured by EEG coherence in humans. Clin Neurophysiol 110(1):115–125PubMedGoogle Scholar
  122. 122.
    Fingelkurts AA, Fingelkurts AA, Kähkönen SA (2005) Functional connectivity in the brain—is it an elusive concept? Neurosci Biobehav Rev 28(8):827–836PubMedGoogle Scholar
  123. 123.
    Freeman WJ (2003) The wave packet: an action potential for the 21st Century. J Integr Neurosci 2:3–30PubMedGoogle Scholar
  124. 124.
    Kooi KA (1971) Fundamentals of electroencephalography. Harper & Row Publishers, New YorkGoogle Scholar
  125. 125.
    Bullock TH, McClune MC (1989) Lateral coherence of the electroencephalogram: a new measure of brain synchrony. Electroencephalogr Clin Neurophysiol 73:479–498PubMedGoogle Scholar
  126. 126.
    Kaiser M, Görner M, Hilgetag CC (2007) Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J Phys 9:110Google Scholar
  127. 127.
    Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, BerlinGoogle Scholar
  128. 128.
    Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82:111–121PubMedGoogle Scholar
  129. 129.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442PubMedGoogle Scholar
  130. 130.
    Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512PubMedGoogle Scholar
  131. 131.
    Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74PubMedGoogle Scholar
  132. 132.
    Sporns O, Chialvo D, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex rain networks. Trends Cogn Sci 8:418–425PubMedGoogle Scholar
  133. 133.
    Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523PubMedGoogle Scholar
  134. 134.
    Stam C, Reijneveld J (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3PubMedCentralPubMedGoogle Scholar
  135. 135.
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308Google Scholar
  136. 136.
    Freeman WJ (1991) The physiology of perception. Scientific Am, p 78–85Google Scholar
  137. 137.
    Molle M, Marshall L, Lutzenberger W, Pietrowsky R, Fehm HL, Born J (1996) Enhanced dynamic complexity in the human EEG during creative thinking. Neurosci Lett 208:61–64PubMedGoogle Scholar
  138. 138.
    Lehmann D, Koenig T (1997) Spatio-temporal dynamics of alpha brain electric fields, and cognitive modes. Int J Psychophysiol 26:99–112PubMedGoogle Scholar
  139. 139.
    Borisov SV (2002) Studying of a phasic structure of the alpha activity of human EEG. Ph.D. dissertation, MSU, Moscow, Russian Federation, 213 p, (in Russian)Google Scholar
  140. 140.
    Muller TJ, Koenig T, Wackermann J et al (2005) Subsecond changes of global brain state in illusory multistable motion perception. J Neural Transm 112:565–576PubMedGoogle Scholar
  141. 141.
    Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R (2009) Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci U S A 106:11747–11752PubMedCentralPubMedGoogle Scholar
  142. 142.
    Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore ET (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A 103:19518–19523PubMedCentralPubMedGoogle Scholar
  143. 143.
    Micheloyannis S, Vourkas M, Tsirka V, Karakonstantaki E, Kanatsouli K, Stam CJ (2009) The influence of ageing on complex brain networks: a graph theoretical analysis. Hum Brain Mapp 30:200–208PubMedGoogle Scholar
  144. 144.
    Boldyreva GN, Zhavoronkova LA, Sharova EV, Dobronravova IS (2007) Electroencephalographic intercentral interaction as a reflection of normal and pathological human brain activity. Span J Psychol 10(1):167–177PubMedGoogle Scholar
  145. 145.
    Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99PubMedGoogle Scholar
  146. 146.
    Lantz G, Michel CM, Seeck M et al (2001) Space-oriented segmentation and 3-dimensional source reconstruction of ictal EEG patterns. Clin Neurophysiol 112:688–697PubMedGoogle Scholar
  147. 147.
    Strik WK, Dierks T, Becker T, Lehmann D (1995) Larger topographical variance and decreased duration of brain electric microstates in depression. J Neural Transm 99:213–222Google Scholar
  148. 148.
    Fingelkurts AA, Fingelkurts AA, Rytsala H, Suominen K, Isometsä E, Kähkönen S (2007) Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Hum Brain Mapp 28(3):247–261PubMedGoogle Scholar
  149. 149.
    Lehmann D, Wackermann J, Michel CM, Koenig T (1993) Space-oriented EEG segmentation reveals changes in brain electric field maps under the influence of a nootropic drug. Psychiatry Res 50:275–282PubMedGoogle Scholar
  150. 150.
    Kinoshita T, Strik WK, Michel CM, Yagyu T, Saito M, Lehmann D (1995) Microstate segmentation of spontaneous multichannel EEG map series under diazepam and sulpiride. Pharmacopsychiatry 28:51–55PubMedGoogle Scholar
  151. 151.
    Fingelkurts AA, Fingelkurts AA, Kähkönen S (2005) New perspectives in pharmaco-electroencephalography. Prog Neuropsychopharmacol Biol Psychiatry 29:193–199PubMedGoogle Scholar
  152. 152.
    Fingelkurts AA, Fingelkurts AA, Kivisaari R et al (2006) Increased local and decreased remote functional connectivity at EEG alpha and beta frequency bands in opioid-dependent patients. Psychopharmacology 188(1):42–52PubMedGoogle Scholar
  153. 153.
    Fingelkurts AA, Fingelkurts AA, Kivisaari R et al (2007) Opioid withdrawal results in an increased local and remote functional connectivity at EEG alpha and beta frequency bands. Neurosci Res 58(1):40–49PubMedGoogle Scholar
  154. 154.
    Fingelkurts AA, Fingelkurts AA, Kivisaari R et al (2009) Methadone may restore local and remote EEG functional connectivity in opioid-dependent patients. Int J Neurosci 119(9):1469–1493PubMedGoogle Scholar
  155. 155.
    Borisov SV, Kaplan AY, Gorbachevskaya NL, Kozlova IA (2005) Analysis of EEG structural synchrony in adolescents with schizophrenic disorders. Fiziol Cheloveka 31:16–23 (in Russian)PubMedGoogle Scholar
  156. 156.
    Micheloyannis S, Pachou E, Stam CJ et al (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66PubMedGoogle Scholar
  157. 157.
    Rubinov M, Knock SA, Stam CJ et al (2009) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403–416PubMedGoogle Scholar
  158. 158.
    Freeman WJ (2007) Indirect biological measures of consciousness from field studies of brains as dynamical systems. Neural Netw 20:1021–1031PubMedGoogle Scholar
  159. 159.
    Elul R (1969) Gaussian behavior of the electroencephalogram: changes during performance of mental task. Science 164(3877):328–331PubMedGoogle Scholar
  160. 160.
    Klimesch W (1999) Event-related band power changes and memory performance. In: Pfurtscheller G, da Silva FH L (eds) Event-Related desynchronization. Handbook of electroencephalography and clinical neurophysiology. Elsevier, Amsterdam, pp 161–178Google Scholar
  161. 161.
    Başar E, Özgören M, Karakas S, Başar–Eroglu C (2004) Super-synergy in the brain: the grandmother percept is manifested by multiple oscillations. Int J Bifurcat Chaos 14:453–491Google Scholar
  162. 162.
    Fingelkurts AA, Fingelkurts AA, Krause CM, Sams M (2002) Probability interrelations between pre-/post-stimulus intervals and ERD/ERS during a memory task. Clin Neurophysiol 113:826–843PubMedGoogle Scholar
  163. 163.
    Landa P, Gribkov D, Kaplan A (2000) Oscillatory processes in biological systems. In: Malik SK, Chandrashekaran MK, Pradhan N (eds) Nonlinear phenomena in biological and physical sciences. Indian National Science Academy, New Delhi, pp 123–152Google Scholar
  164. 164.
    Skinner JE, Molnar M (2000) “Response cooperativity”: a sign of a nonlinear neocortical mechanism for stimulus-binding during classical conditioning in the act. In: Malik SK, Chandrashekaran MK, Pradhan N (eds) Nonlinear phenomena in biological and physical sciences. Indian National Science Academy, New Deli, pp 223–248Google Scholar
  165. 165.
    Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31:439–449PubMedGoogle Scholar
  166. 166.
    Freeman W, Burke B, Holmes M (2003) Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain Mapp 19(4):248–272PubMedGoogle Scholar
  167. 167.
    Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B Biol Sci 360:1051–1074PubMedCentralPubMedGoogle Scholar
  168. 168.
    Breakspear M, Terry JR (2003) Topographic organization of nonlinear interdependence in multichannel human EEG. NeuroImage 16:822–835Google Scholar
  169. 169.
    Stam CJ (2006) Nonlinear brain dynamics. Nova Science Publishers Inc., New YorkGoogle Scholar
  170. 170.
    Feinberg TE (2000) The nested hierarchy of consciousness: a neurobiological solution to the problem of mental unity. Neurocase 6(2):75–81Google Scholar
  171. 171.
    Feinberg TE (2009) From axons to identity: neurological explorations of the nature of the self. WW Norton & Company, New YorkGoogle Scholar
  172. 172.
    Feinberg TE (2012) Neuroontology, neurobiological naturalism, and consciousness: a challenge to scientific reduction and a solution. Phys Life Rev 9(1):13–34PubMedGoogle Scholar
  173. 173.
    Palm G (1990) Cell assemblies as a guideline for brain research. Concepts Neurosci 1:133–147Google Scholar
  174. 174.
    Eichenbaum H (1993) Thinking about brain cell assemblies. Science 261:993–994PubMedGoogle Scholar
  175. 175.
    Buzsáki G (2006) Rhythms of the brain. Oxford University Press, OxfordGoogle Scholar
  176. 176.
    Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  177. 177.
    von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24:95–104PubMedGoogle Scholar
  178. 178.
    Friston K (2000) The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 355:215–236PubMedCentralPubMedGoogle Scholar
  179. 179.
    Triesch J, von der Malsburg C (2001) Democratic integration: self-organized integration of adaptive cues. Neural Comput 13(9):2049–2074PubMedGoogle Scholar
  180. 180.
    Kaplan AY, Borisov SV (2003) Dynamic properties of segmental characteristics of EEG alpha activity in rest conditions and during cognitive load. Zh Vyssh Nerv Deiat Im I P Pavlova 53:22–32 (in Russian)PubMedGoogle Scholar
  181. 181.
    Averbeck BB, Lee D (2004) Coding and transmission of information by neural ensembles. Trends Neurosci 27:225–230PubMedGoogle Scholar
  182. 182.
    Zeki S (2004) Insights into visual consciousness. In: Frackowiak RSJ, Friston KJ, Frith CD et al (eds) Human brain function. Academic, San DiegoGoogle Scholar
  183. 183.
    Singer W (2001) Consciousness and the binding problem. Ann N Y Acad Sci 929:123–146PubMedGoogle Scholar
  184. 184.
    van Leeuwen C (2007) What needs to emerge to make you conscious? J Conscious Stud 14:115–136Google Scholar
  185. 185.
    Pulvermueller F, Preissl H, Eulitz C, et al (1994) Brain rhythms, cell assemblies and cognition: evidence from the processing of words and pseudowords. Psycoloquy 5(48):brain-rhythms.1.pulvermueller
  186. 186.
    Kirillov AB, Makarenko VI (1991) Metastability and phase transition in neural networks: statistical approach. In: Holden AV, Kryukov VI (eds) Neurocomputers and attention, vol 2. Manchester University Press, Manchester, pp 825–922Google Scholar
  187. 187.
    Fujisawa S, Matsuki N, Ikegaya Y (2006) Single neurons can induce phase transitions of cortical recurrent networks with multiple internal states. Cereb Cortex 16:639–654PubMedGoogle Scholar
  188. 188.
    Leznik E, Makarenko V, Llinas R (2002) Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci 22:2804–2815PubMedGoogle Scholar
  189. 189.
    Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420PubMedGoogle Scholar
  190. 190.
    Plenz D, Thiagarajan TC (2007) The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci 30:101–110PubMedGoogle Scholar
  191. 191.
    Plenz D (2012) Neuronal avalanches and coherence potentials. Eur Phys J Spec Top 205:259–301Google Scholar
  192. 192.
    John ER (2002) The neurophysics of consciousness. Brain Res Brain Res Rev 39:1–28PubMedGoogle Scholar
  193. 193.
    Başar E (2005) Memory as the “whole brain work”. A large-scale model based on “oscillations in super-synergy”. Int J Psychophysiol 58:199–226PubMedGoogle Scholar
  194. 194.
    Truccolo WA, Ding M, Knuth KH, Nakamura R, Bressler S (2002) Trial-to-trial variability of cortical evoked responses: implications for analysis of functional connectivity. Clin Neurophysiol 113:206–226PubMedGoogle Scholar
  195. 195.
    Brodsky BE, Darkhovsky BS (1993) Nonparametric methods in change-point problems. Kluwer, DordrechtGoogle Scholar
  196. 196.
    Geisser S, Johnson WM (2006) Modes of parametric statistical inference. Wiley, Hoboken, NJGoogle Scholar
  197. 197.
    Lopes da Silva FH, Mars NJI (1987) Parametric methods in EEG analysis. In: Gevins AS, Remond A (eds) EEG handbook (revised series): methods of analysis of brain electrical and magnetic signals, vol 1. Elsevier Science, Amsterdam, pp 243–260Google Scholar
  198. 198.
    Pardey J, Roberts S, Tarassenko L (1996) A review of parametric modelling techniques for EEG analysis. Med Eng Phys 18:2–11PubMedGoogle Scholar
  199. 199.
    Deistler M, Prohaska O, Reschenhofer E, Vollrner R (1986) Procedure for identification of different stages of EEG background activity and its application to the detection of drug effects. Electroencephalogr Clin Neurophysiol 64:294–300PubMedGoogle Scholar
  200. 200.
    Fingelkurts AA, Fingelkurts AA (1995) Microstructural analysis of active brain EEG: general characteristics and synchronization peculiarities of change-point process. Diploma Project. MSU, Moscow, Russian Federation, 207 p, (in Russian)Google Scholar
  201. 201.
    Klimesch W, Schack B, Sauseng P (2005) The functional significance of theta and upper alpha oscillations. Exp Psychol 52:99–108PubMedGoogle Scholar
  202. 202.
    Fingelkurts AA, Fingelkurts AA, Kallio S, Revonsuo A (2007) Cortex functional connectivity as a neurophysiological correlate of hypnosis: an EEG case study. Neuropsychologia 45:1452–1462PubMedGoogle Scholar
  203. 203.
    David O, Cosmelli D, Lachaux J-P, Baillet S, Garnero L, Martinerie J (2003) A Theoretical and experimental introduction to the non-invasive study of large-scale neural phase synchronization in human beings. Int J Comput Cogn 1(4):53–77Google Scholar
  204. 204.
    Ainsworth M, Lee S, Cunningham MO et al (2012) Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron 75:572–583PubMedGoogle Scholar
  205. 205.
    Verevkin E, Putilov D, Donskaya O, Putilov A (2007) A new SWPAQ’s scale predicts the effects of sleep deprivation on the segmental structure of alpha waves. Biol Rhythm Res 39(1):21–37Google Scholar
  206. 206.
    Putilov DA, Verevkin EG, Donskaya OG, Putilov AA (2007) Segmental structure of alpha waves in sleep-deprived subjects. Somnologie 11(3):202–210Google Scholar
  207. 207.
    Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497Google Scholar
  208. 208.
    Shishkin SL (1997) A study of synchronization of instants of abrupt changes in human EEG alpha activity. PhD dissertation. MSU, Moscow, Russian Federation, (in Russian)Google Scholar
  209. 209.
    Freeman W, Rogers L (2003) A neurobiological theory of meaning in perception. Part 5. Multicortical patterns of phase modulation in gamma EEG. Int J Bifurc Chaos 13:2867–2887Google Scholar
  210. 210.
    Fingelkurts AA, Fingelkurts AA (2010) Topographic mapping of rapid transitions in EEG multiple frequencies: EEG frequency domain of operational synchrony. Neurosci Res 68:207–224PubMedGoogle Scholar
  211. 211.
    Singer W, Engel AK, Kreiter AK, Munk MHJ, Neuenschwander S, Roelfsema PR (1997) Neural assemblies: necessity, signature and detectability. Trends Cogn Sci 1:252–261PubMedGoogle Scholar
  212. 212.
    Livanov MN, Gavrilova NA, Aslanov AS (1964) Intercorrelations between different cortical regions of human brain during mental activity. Neuropsychologia 2:281–289Google Scholar
  213. 213.
    Livanov MN (1977) Spatial organization of cerebral processes. Wiley, New YorkGoogle Scholar
  214. 214.
    Lazarev VV, Sviderskaya NE, Khomskaya ED (1977) Changes in spatial synchronization of biopotentials during various types of intellectual activity. Hum Physiol 3:187–194, a translation from Fiziol ChelovGoogle Scholar
  215. 215.
    Lazarev VV (1978) Changes of functional state of the brain during motor and intellectual activity. In: Psychological aspects of human activity. II. Industrial psychology and psychology of labour. Institute of Psychology, USSR Academy of Sciences, Moscow, p 103–114Google Scholar
  216. 216.
    Lazarev VV (1998) On the intercorrelation of some frequency and amplitude parameters of the human EEG and its functional significance. Com. I. Multidimensional neurodynamic organization of functional states of the brain during intellectual, perceptive and motor activity in normal subjects. Int J Psychophysiol 28:77–98PubMedGoogle Scholar
  217. 217.
    Fingelkurts AA, Fingelkurts AA, Neves CFH (2009) Phenomenological architecture of a mind and operational architectonics of the brain: the unified metastable continuum. New Math Nat Comput 5:221–244Google Scholar
  218. 218.
    Bressler SL, McIntosh AR (2007) The role of neural context in large-scale neurocognitive network operations. In: Jirsa VK, McIntosh AR (eds) Handbook of brain connectivity. Springer, Berlin, pp 403–419Google Scholar
  219. 219.
    Kelso JAS (1995) Dynamics patterns: the self-organization of brain and behaviour. MIT Press, Cambridge, MAGoogle Scholar
  220. 220.
    Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5(1):26–36PubMedGoogle Scholar
  221. 221.
    Kelso JAS, Tognoli E (2007) Toward a complementary neuroscience: Metastable coordination dynamics of the brain. In: Kozma R, Perlovsky L (eds) Neurodynamics of higher-level cognition and consciousness. Springer, HeidelbergGoogle Scholar
  222. 222.
    Kelso JAS, Engstrøm D (2006) The complementary nature. MIT Press, CambridgeGoogle Scholar
  223. 223.
    Kelso JAS (2009) Coordination dynamics. In: Meyers RA (ed) Encyclopedia of complexity and systems sciences. Springer, Berlin, pp 1537–1564Google Scholar
  224. 224.
    Fingelkurts AA, Fingelkurts AA (2012) Mind as a nested operational architectonics of the brain. Comment on “Neuroontology, neurobiological naturalism, and consciousness: a challenge to scientific reduction and a solution” by Todd E. Feinberg. Phys Life Rev 9:49–50PubMedGoogle Scholar
  225. 225.
    Brown R, Kocarev L (2000) A unifying definition of synchronization for dynamical systems. Chaos 10:344–349PubMedGoogle Scholar
  226. 226.
    Horwitz B (2003) The elusive concept of brain connectivity. NeuroImage 19:466–470PubMedGoogle Scholar
  227. 227.
    Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1993) Functional connectivity: the principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14PubMedGoogle Scholar
  228. 228.
    Le Van Quyen M, Bragin A (2007) Analysis of dynamic brain oscillations: methodological advances. Trends Neurosci 30(7):365–373Google Scholar
  229. 229.
    Fingelkurts AA, Fingelkurts AA (2006) Timing in cognition and EEG brain dynamics: discreteness versus continuity. Cogn Process 7:135–162PubMedGoogle Scholar
  230. 230.
    Churchland PS, Sejnowski T (1992) The computational brain. MIT, CambridgeGoogle Scholar
  231. 231.
    Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: a critical analysis. Cognition 28:3–71PubMedGoogle Scholar
  232. 232.
    Fingelkurts AA, Fingelkurts AA, Ivashko RM, Kaplan AY (1998) EEG analysis of operational synchrony between human brain cortical areas during memory task performance. Vestn Moskovsk Univ, Series 16. Biol 1:3–11 (in Russian)Google Scholar
  233. 233.
    Köhler W, Held R (1947) The cortical correlate of pattern vision. Science 110:414–419Google Scholar
  234. 234.
    Dresp-Langley B, Durup J (2009) A plastic temporal brain code for conscious state generation. Neural Plast 2009:482696PubMedCentralPubMedGoogle Scholar
  235. 235.
    Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167PubMedGoogle Scholar
  236. 236.
    Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:364–374Google Scholar
  237. 237.
    Allegrini P, Menicucci D, Bedini R et al (2009) Spontaneous brain activity as a source of ideal 1/f noise. Phys Rev E Stat Nonlin Soft Matter Phys 80:061914PubMedGoogle Scholar
  238. 238.
    Allegrini P, Menicucci D, Bedini R, Gemignani A, Paradisi P (2010) Complex intermittency blurred by noise: theory and application to neural dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 82:015103PubMedGoogle Scholar
  239. 239.
    Allegrini P, Paradisi P, Menicucci D, Gemignani A (2010) Fractal complexity in spontaneous EEG metastable state transitions: new vistas on integrated neural dynamics. Front Physiol 1:128PubMedCentralPubMedGoogle Scholar
  240. 240.
    Lee MH (2007) Birkhoff's theorem, many-body response functions, and the ergodic condition. Phys Rev Lett 98:110403PubMedGoogle Scholar
  241. 241.
    Silvestri L, Fronzoni L, Grigolini P, Allegrini P (2009) Event-driven power-law relaxation in weak turbulence. Phys Rev Lett 102:014502PubMedGoogle Scholar
  242. 242.
    West BJ, Geneston EL, Grigolini P (2008) Maximizing information exchange between complex networks. Phys Rep 468:1–99Google Scholar
  243. 243.
    Shew WL, Yang H, Yu S, Roy R, Plenz D (2011) Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J Neurosci 31(1):55–63PubMedCentralPubMedGoogle Scholar
  244. 244.
    Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177PubMedGoogle Scholar
  245. 245.
    Stanley HE (1987) Introduction to phase transitions and critical phenomena. Oxford University Press, Oxford, UKGoogle Scholar
  246. 246.
    Pöppel E (1988) Mindworks: time and conscious experience. Harcourt Brace Jovanovich, BostonGoogle Scholar
  247. 247.
    Fingelkurts AA, Fingelkurts AA, Krause CM, Kaplan AY, Borisov SV, Sams M (2003) Structural (operational) synchrony of EEG alpha activity during an auditory memory task. NeuroImage 20(1):529–542PubMedGoogle Scholar
  248. 248.
    Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694PubMedGoogle Scholar
  249. 249.
    Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 98:4259–4264PubMedCentralPubMedGoogle Scholar
  250. 250.
    Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus independent thought. Science 315:393–395PubMedCentralPubMedGoogle Scholar
  251. 251.
    Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11:49–57PubMedGoogle Scholar
  252. 252.
    Northoff G, Heinzel A, de Greck M et al (2006) Self-referential processing in our brain—a meta-analysis of imaging studies on the self. NeuroImage 31:440–457PubMedGoogle Scholar
  253. 253.
    Revonsuo A (2006) Inner presence: consciousness as a biological phenomenon. MIT Press, CambridgeGoogle Scholar
  254. 254.
    Trehub A (2007) Space, self, and the theater of consciousness. Conscious Cogn 16:310–330PubMedGoogle Scholar
  255. 255.
    Kaplan AY, Fingelkurts AA, Fingelkurts AA, Ivashko RM (1998) The temporal consistency of phasic conversions in the basic frequency components of the EEG. Zh Vyssh Nerv Deiat Im I P Pavlova 48(5):816–826 (in Russian)PubMedGoogle Scholar
  256. 256.
    Monto S (2012) Nested synchrony—a novel cross-scale interaction among neuronal oscillations. Front Physiol 3:384PubMedCentralPubMedGoogle Scholar
  257. 257.
    Klimesch W, Freunberger R, Sauseng P (2010) Oscillatory mechanisms of process binding in memory. Neurosci Biobehav Rev 34:1002–1014PubMedGoogle Scholar
  258. 258.
    Cohen MX (2008) Assessing transient cross-frequency coupling in EEG data. J Neurosci Methods 168:494–499PubMedGoogle Scholar
  259. 259.
    Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200. doi: 10.3389/fnins.2010.00200 PubMedCentralPubMedGoogle Scholar
  260. 260.
    Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482Google Scholar
  261. 261.
    Simon HA (1995) Near-decomposability and complexity: how a mind resides in a brain. In: Morowitz H, Singer J (eds) The mind, the brain, and complex adaptive systems. Addison-Wesley, Reading, MA, pp 25–43Google Scholar
  262. 262.
    Pan RK, Sinha S (2009) Modularity produces small-world networks with dynamical time-scale separation. Europhys Lett 85:68006Google Scholar
  263. 263.
    Shanahan M (2010) Metastable chimera states in community-structured oscillator networks. Chaos 20:013108PubMedGoogle Scholar
  264. 264.
    Müller-Linow M, Hilgetag CC, Hütt MT (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4:e100019. doi: 10.1371/journal.pcbi.1000190 Google Scholar
  265. 265.
    Robinson PA, Henderson JA, Matar E, Riley P, Gray RT (2009) Dynamical reconnection and stability constraints on cortical network architecture. Phys Rev Lett 103:108104PubMedGoogle Scholar
  266. 266.
    Kaiser M, Hilgetag CC (2010) Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front Neuroinform 4:8. doi: 10.3389/fninf.2010.00008 PubMedCentralPubMedGoogle Scholar
  267. 267.
    Fuster JM (1997) Network memory. Trends Neurosci 20:451–459PubMedGoogle Scholar
  268. 268.
    McIntosh AR (1999) Mapping cognition to the brain through neural interactions. Memory 7:523–548PubMedGoogle Scholar
  269. 269.
    Vincent C, Thou N, Ferguson E et al (2001) Scene specific memory in humans: neural activity associated with the detection of novelty prior to memory formation. NeuroImage 13:S758Google Scholar
  270. 270.
    Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613PubMedGoogle Scholar
  271. 271.
    Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedGoogle Scholar
  272. 272.
    Klimesch W (1997) EEG-alpha rhythms and memory processes. Int J Psychophysiol 26:319–340PubMedGoogle Scholar
  273. 273.
    Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60:139–148PubMedGoogle Scholar
  274. 274.
    Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25:3962–3972PubMedGoogle Scholar
  275. 275.
    Palva S, Palva M (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16(4):219–230PubMedGoogle Scholar
  276. 276.
    Kaplan AY, Fingelkurts AA, Fingelkurts AA, Ivashko RM (1998) Probability patterns of the human EEG narrow-band differential spectra during memory processes. Fisiol Chelov (Hum Physiol) 24(4):453–461 (in Russian)Google Scholar
  277. 277.
    Herrmann WM (1982) Development and critical evaluation of an objective procedure for the electroencephalographic classification of psychotropic drugs. In: Herrmann WM (ed) EEG in drug research. Gustav Fisher, Stuttgart, NY, pp 249–351Google Scholar
  278. 278.
    Kaplan AY, Kochetova AG, Nezavibathko VN, Rjasina TV, Ashmarin IP (1996) Synthetic ACTH analogue SEMAX displays nootropic-like activity in humans. Neurosci Res Commun 19(2):115–123Google Scholar
  279. 279.
    Knyazev GG, Slobodskaya HR (2003) Personality trait of behavioural inhibition is associated with oscillatory systems reciprocal relationships. Int J Psychophysiol 48:247–261PubMedGoogle Scholar
  280. 280.
    Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88PubMedGoogle Scholar
  281. 281.
    Palva S, Monto S, Palva JM (2010) Graph properties of synchronized cortical networks during visual working memory maintenance. NeuroImage 49:3257–3268PubMedGoogle Scholar
  282. 282.
    Kuperstein M, Eichenbaum H, VanDeMark T (1986) Neural group properties in the rat hippocampus during the theta rhythm. Exp Brain Res 61:438–442PubMedGoogle Scholar
  283. 283.
    Sem-Jacobsen CW, Petersen MC, Dodge HW, Lazarte JA, Holman CB (1956) Electroencephalographic rhythms from the depths of parietal, occipital and temporal lobes in man. Electroencephalogr Clin Neurophysiol 8:263–278PubMedGoogle Scholar
  284. 284.
    Klimesch W, Doppelmayr M, Schimke H, Ripper B (1997) Theta synchronization and alpha desynchronization in a memory task. Psychophysiology 34:169–176PubMedGoogle Scholar
  285. 285.
    Bäuml K-H, Hanslmayr S, Pastötter B, Klimesch W (2008) Oscillatory correlates of intentional updating in episodic memory. NeuroImage 41:596–604PubMedGoogle Scholar
  286. 286.
    Fingelkurts AA, Fingelkurts AA, Krause CM, Möttönen R, Sams M (2003) Cortical operational synchrony during audio–visual speech integration. Brain Lang 85:297–312PubMedGoogle Scholar
  287. 287.
    Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G (2012) Toward operational architectonics of consciousness: basic evidence from patients with severe cerebral injuries. Cogn Process 13:111–131PubMedGoogle Scholar
  288. 288.
    Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G (2012) DMN operational synchrony relates to self-consciousness: evidence from patients in vegetative and minimally conscious states. Open Neuroimag J 6:55–68PubMedCentralPubMedGoogle Scholar
  289. 289.
    Collins PY, Patel V, Joestl SS et al (2011) Scientific advisory board and the executive committee of the grand challenges on global mental health. Nature 475:27–30PubMedCentralPubMedGoogle Scholar
  290. 290.
    Wittchen HU, Jacobi F, Rehm J et al (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:655–679PubMedGoogle Scholar
  291. 291.
    Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980PubMedGoogle Scholar
  292. 292.
    Bressler SL (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology 28:S35–S39PubMedGoogle Scholar
  293. 293.
    Miller L (1990) Neuropsychodynamics of alcoholism and addiction: personality, psychopathology, and cognitive style. J Subst Abuse Treat 7:31–49PubMedGoogle Scholar
  294. 294.
    Ornstein TJ, Iddon JL, Baldacchino AM et al (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–126PubMedGoogle Scholar
  295. 295.
    Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95:S91–S117PubMedGoogle Scholar
  296. 296.
    Davis PE, Liddiard H, McMillan TM (2002) Neuropsychological deficits and opiate abuse. Drug Alcohol Depend 67:105–108PubMedGoogle Scholar
  297. 297.
    Damasio AR (2000) The feeling of what happens. Body, emotion and the making of consciousness. Vintage, LondonGoogle Scholar
  298. 298.
    De Vries TJ, Shippenberg TS (2002) Neural systems underlying opiate addiction. J Neurosci 22:3321–3325PubMedGoogle Scholar
  299. 299.
    Franken IHA (2003) Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry 27:563–579PubMedGoogle Scholar
  300. 300.
    Bressler SL (2002) Understanding cognition through large-scale cortical networks. Curr Dir Psychol Sci 11:58–61Google Scholar
  301. 301.
    Edelman GM, Tononi G (2000) A universe of consciousness: how matter becomes imagination. Basic Books, New YorkGoogle Scholar
  302. 302.
    Davidson RJ (1998) Anterior electrophysiological asymmetries, emotion, and depression: conceptual and methodological conundrums. Psychophysiology 35:607–614PubMedGoogle Scholar
  303. 303.
    Rotenberg VS (2004) The peculiarity of the right-hemisphere function in depression: solving the paradoxes. Prog Neuropsychopharmacol Biol Psychiatry 28:1–13PubMedGoogle Scholar
  304. 304.
    Collins A, Loftus E (1975) A spreading-activation theory of semantic processing. Psychol Rev 82:407–428Google Scholar
  305. 305.
    LeDoux JE (2003) The self: clues from the brain. Ann N Y Acad Sci 1001:295–304PubMedGoogle Scholar
  306. 306.
    Ingram R (1984) Towards an information processing analysis of depression. Cogn Ther Res 8:443–478Google Scholar
  307. 307.
    Fossati P, LeB G, Ergis AM, Allilaire JF (2003) Qualitative analysis of verbal fluency in depression. Psychiatry Res 117:17–24PubMedGoogle Scholar
  308. 308.
    Moore BJ, Singh KD, Kinderman P, Bentall RP, Morriss RK, Roberts N (2001) Neuroanatomical basis of semantic processing in relation to personality descriptors of self: an fMRI study in healthy subjects. Poster HBM 2001, BrightonGoogle Scholar
  309. 309.
    Siegle GJ (1999) A neural network model of attention biases in depression. In: Reggia J, Ruppin E (eds) Disorders of brain, behavior, and cognition: the neurocomputational perspective. Elsevier, New York, pp 415–441Google Scholar
  310. 310.
    Tononi G, Edelman GM (2000) Schizophrenia and the mechanisms of conscious integration. Brain Res Rev 31:391–400PubMedGoogle Scholar
  311. 311.
    Rotarska-Jagiela A, van de Ven V, Oertel-Knöchel V, Uhlhaas PJ, Vogeley K, Linden DEJ (2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 117:21–30PubMedGoogle Scholar
  312. 312.
    Joensen P (1986) Prevalence, incidence and classification of epilepsy in the Faroes. Acta Neurol Scand 76:150–155Google Scholar
  313. 313.
    Dawson KA (2004) Temporal organization of the brain: neurocognitive mechanisms and clinical implications. Brain Cogn 54:75–94PubMedGoogle Scholar
  314. 314.
    Insel TR (2010) Rethinking schizophrenia. Nature 468:187–193PubMedGoogle Scholar
  315. 315.
    Tost H, Bilek E, Meyer-Lindenberg A (2012) Brain connectivity in psychiatric imaging genetics. NeuroImage 62:2250–2260PubMedGoogle Scholar
  316. 316.
    Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD (1996) The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: Implications for the evolution of sleep. J Neurosci 16:3500–3506PubMedGoogle Scholar
  317. 317.
    Zeplin H, Siegel J, Tobler I (2005) Mammalian sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier Saunders, PhiladelphiaGoogle Scholar
  318. 318.
    Mignot E (2008) Why we sleep: the temporal organization of recovery. PLoS Biol 6(4):e106. doi: 10.1371/journal.pbio.0060106 PubMedCentralPubMedGoogle Scholar
  319. 319.
    Karni A, Tanne D, Rubenstein BS, Askenasy JJ, Sagi D (1994) Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265:679–682PubMedGoogle Scholar
  320. 320.
    Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437:1272–1278PubMedGoogle Scholar
  321. 321.
    Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62PubMedGoogle Scholar
  322. 322.
    Noreika V, Valli K, Lahtela H, Revonsuo A (2009) Early-night serial awakenings as a new paradigm for studies on NREM dreaming. Int J Psychophysiol 74:14–18PubMedGoogle Scholar
  323. 323.
    Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–284PubMedGoogle Scholar
  324. 324.
    Buchman TG (2002) The community of the self. Nature 420:246–251PubMedGoogle Scholar
  325. 325.
    Tirsch WS, Stude P, Scherb H, Keidel M (2004) Temporal order of nonlinear dynamics in human brain. Brain Res Brain Res Rev 45:79–95PubMedGoogle Scholar
  326. 326.
    Volkow ND, Wang GJ, Hitzemann R et al (1995) Depression of thalamic metabolism by lorazepam is associated with sleepiness. Neuropsychopharmacology 12:123–132PubMedGoogle Scholar
  327. 327.
    Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739PubMedGoogle Scholar
  328. 328.
    Maremmani I, Reisinger M (1995) Methadone treatment in Europe. European Methadone Association Forum, Oct 13, Phoenix, AZ, USAGoogle Scholar
  329. 329.
    Friston KJ (1997) Transients, metastability, and neuronal dynamics. NeuroImage 5:164–171PubMedGoogle Scholar
  330. 330.
    Vakorin VA, Lippe S, McIntosh AR (2011) Variability of brain signals processed locally transforms into higher connectivity with brain development. J Neurosci 31(17):6405–6413PubMedGoogle Scholar
  331. 331.
    Fischer KW (1980) A theory of cognitive development: the control and construction of hierarchies of skills. Psychol Rev 87:477–531Google Scholar
  332. 332.
    Case R (1985) Intellectual development: birth to adulthood. Academic, New YorkGoogle Scholar
  333. 333.
    Case R (1987) The structure and process of intellectual development. Int J Psychol 22:571–607Google Scholar
  334. 334.
    Pascual-Leone J (1976) A view of cognition from a formalist's perspective. In: Riegel KF, Meacham J (eds) The developing individual in a changing world. Mouton, The HagueGoogle Scholar
  335. 335.
    van Geert P (1991) A dynamic systems model of cognitive and language growth. Psychol Rev 98:3–53Google Scholar
  336. 336.
    Thatcher RW, North DM, Biver CJ (2008) Development of cortical connections as measured by EEG coherence and phase delays. Hum Brain Mapp 29(12):1400–1415PubMedGoogle Scholar
  337. 337.
    van Beijsterveldt CE, Molenaar PC, de Geus EJ, Boomsma DI (1998) Genetic and environmental influences on EEG coherence. Behav Genet 28(6):443–453PubMedGoogle Scholar
  338. 338.
    van Baal GC, Boomsma DI, de Geus EJ (2001) Longitudinal genetic analysis of EEG coherence in young twins. Behav Genet 31(6):637–651PubMedGoogle Scholar
  339. 339.
    Thatcher RW, North DM, Biver CJ (2009) Self-organized criticality and the development of EEG phase reset. Hum Brain Mapp 30(2):553–574PubMedGoogle Scholar
  340. 340.
    van Baal C (1997) A genetic perspective on the developing brain. Ph.D. Dissertation, VRIJE University, The Netherlands Organization for Scientific ResearchGoogle Scholar
  341. 341.
    Eysenck HJ, Eysenck SBG (1976) Psychoticism as a dimension of personality. Hodder & Stoughton, LondonGoogle Scholar
  342. 342.
    Diamond S (1957) Personality and temperament. Harper, New YorkGoogle Scholar
  343. 343.
    Bekhtereva NP (1978) The neurophysiological aspects of human mental activity, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  344. 344.
    Ramos-Loyo J, Gonzalez-Garrido AA, Amezcua C, Guevara MA (2004) Relationship between resting alpha activity and the ERPs obtained during a highly demanding selective attention task. Int J Psychophysiol 54:251–262PubMedGoogle Scholar
  345. 345.
    Kounios J, Fleck JI, Green DL et al (2008) The origins of insight in resting-state brain activity. Neuropsychologia 46:281–291PubMedCentralPubMedGoogle Scholar
  346. 346.
    Zeki S (2005) The Ferrier Lecture 1995 behind the seen: the functional specialization of the brain in space and time. Philos Trans R Soc Lond B Biol Sci 360:1145–1183PubMedCentralPubMedGoogle Scholar
  347. 347.
    Pockett S (2000) The nature of consciousness: a hypothesis. Writers Club Press, Lincoln, NEGoogle Scholar
  348. 348.
    Metzinger T (2003) Being no one. The self-model theory of subjectivity. MIT Press, CambridgeGoogle Scholar
  349. 349.
    Metzinger T (2007) The self-model theory of subjectivity (SMT). Scholarpedia 2:4174Google Scholar
  350. 350.
    Kallio S, Revonsuo A (2003) Hypnotic phenomena and altered states of consciousness: a multilevel framework of description and explanation. Contemp Hypn 20:111–164Google Scholar
  351. 351.
    Hilgard ER (1986) Divided consciousness: multiple controls of human thought and action, revisedth edn. Wiley, New YorkGoogle Scholar
  352. 352.
    Gruzelier JH (2000) Redefining hypnosis: theory, methods and integration. Contemp Hypn 17:51–70Google Scholar
  353. 353.
    Von Kirchenheim C, Persinger M (1991) Time distortion: a comparison of hypnotic induction and progressive relaxation procedures. Int J Clin Exp Hypn 39:63–66Google Scholar
  354. 354.
    Naish P (2001) Hypnotic time perception: busy beaver or tardy timekeeper. Contemp Hypn 18:87–99Google Scholar
  355. 355.
    Dietrich A (2003) Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn 12:231–256PubMedGoogle Scholar
  356. 356.
    Chalmers D (1995) Facing up to the problem of consciousness. J Conscious Stud 2:200–219Google Scholar
  357. 357.
    Angel L (1989) How to build a conscious machine. Westview Press, Boulder, COGoogle Scholar
  358. 358.
    Holland O (2003) Editorial introduction. J Conscious Stud 10:1–6Google Scholar
  359. 359.
    Minsky M (1991) Conscious machines. Machinery of consciousness. National Research Council of Canada, MontrealGoogle Scholar
  360. 360.
    Minsky M (2006) The emotion machine: commonsense thinking, artificial intelligence, and the future of the human mind. Simon and Schuster, New YorkGoogle Scholar
  361. 361.
    McCarthy J (1995) Making robot conscious of their mental states. In: Muggleton S (ed) Machine intelligence. Oxford University Press, OxfordGoogle Scholar
  362. 362.
    Aleksander I (2001) The self ‘out there’. Nature 413:23PubMedGoogle Scholar
  363. 363.
    Holland O (2003) Machine consciousness. Imprint Academic, Exeter, UKGoogle Scholar
  364. 364.
    Adami C (2006) What do robots dreams of? Science 314:1093–1094PubMedGoogle Scholar
  365. 365.
    Chella A, Manzotti R (2007) Artificial consciousness. Imprint Academic, Exeter, UKGoogle Scholar
  366. 366.
    Fingelkurts AA, Fingelkurts AA, Neves CFH (2009) Brain and mind operational architectonics and man-made “machine” consciousness. Cogn Process 10:105–111PubMedGoogle Scholar
  367. 367.
    Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Network 17:211–221Google Scholar
  368. 368.
    Seth AK (2009) The strength of weak artificial consciousness. Int J Mach Conscious 1:71–82Google Scholar
  369. 369.
    Fingelkurts AA, Fingelkurts AA, Neves CFH (2012) “Machine” consciousness and “artificial” thought: an operational architectonics model guided approach. Brain Res 1428:80–92PubMedGoogle Scholar
  370. 370.
    Koch C, Tononi G (2008) Can machines be conscious? IEEE Spectr 6:47–51Google Scholar
  371. 371.
    Fingelkurts AA, Fingelkurts AA, Neves CFH (2013) Consciousness as a phenomenon in the operational architectonics of brain organization: Criticality and self-organization considerations. Chaos Solitons Fractals 55:13–31Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrew A. Fingelkurts
    • 1
    Email author
  • Alexander A. Fingelkurts
    • 1
  1. 1.BM-Science—Brain and Mind Technologies Research CentreEspooFinland

Personalised recommendations