Advertisement

Spatial Light Modulators for Complex Spatiotemporal Illumination of Neuronal Networks

  • Francesco Difato
  • Marco Dal Maschio
  • Riccardo Beltramo
  • Axel Blau
  • Fabio Benfenati
  • Tommaso Fellin
Protocol
Part of the Neuromethods book series (NM, volume 67)

Abstract

The introduction of fluorescent probes and light-sensitive molecules and the recent development of optogenetics are tremendously contributing to our understanding of neuronal circuit function. In parallel with the development of these optical tools, new technologies for the illumination of neural tissue with complex spatiotemporal patterns have been introduced. Here, we describe a method for generating spatially modulated illumination by using liquid crystal on silicon spatial light modulators (LCOS-SLMs). The theoretical background and the description of working principles of LCOS-SLMs are presented together with a detailed experimental procedure to install LCOS-SLMs on conventional two-photon laser scanning microscopes and perform experiments on neuronal cells. In combination with the development of light-sensitive proteins with cell-specific and subcellularly localized expression, this technical approach has the potential to open new horizons for the optical investigation of neuronal circuits.

Key words

Digital holography Structured light Two-photon microscopy Imaging Photostimulation Uncaging 

Notes

Acknowledgments

We thank Gian Michele Ratto for critical reading of the manuscript. This work was supported by grants from MIUR PRIN program to F. Benfenati, Telethon-Italy (GGP09134 to F. Benfenati and GGP10138 to T. Fellin), and by the San Paolo “Programma in Neuroscienze” grant to F. Benfenati and T. Fellin.

References

  1. 1.
    Zhang J, Campbell RE, Ting AY et al (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918PubMedCrossRefGoogle Scholar
  2. 2.
    Giepmans BN, Adams SR, Ellisman MH et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224PubMedCrossRefGoogle Scholar
  3. 3.
    Kramer RH, Fortin DL, Trauner D (2009) New photochemical tools for controlling neuronal activity. Curr Opin Neurobiol 19:544–552PubMedCrossRefGoogle Scholar
  4. 4.
    Gorostiza P, Isacoff E (2007) Optical switches and triggers for the manipulation of ion channels and pores. Mol Biosyst 3:686–704PubMedCrossRefGoogle Scholar
  5. 5.
    Airan RD, Hu ES, Vijaykumar R et al (2007) Integration of light-controlled neuronal firing and fast circuit imaging. Curr Opin Neurobiol 17:587–592PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang F, Aravanis AM, Adamantidis A et al (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581PubMedCrossRefGoogle Scholar
  7. 7.
    Knopfel T, Lin MZ, Levskaya A et al (2010) Toward the second generation of optogenetic tools. J Neurosci 30:14998–15004PubMedCrossRefGoogle Scholar
  8. 8.
    McManamon PF, Watson EA (2009) A review of phased array steering for narrow-band electrooptical systems. Proc IEEE 97:1078–1096CrossRefGoogle Scholar
  9. 9.
    Savage N (2009) Digital spatial light modulators. Nat Photonics 3:170–172CrossRefGoogle Scholar
  10. 10.
    Maurer C, Jesacher S, Bernet M et al (2011) What spatial light modulators can do for optical microscopy. Laser Photonics Rev 5:81–101CrossRefGoogle Scholar
  11. 11.
    Tyson RK (1991) Principles of adaptive optics. Academic Press, LondonGoogle Scholar
  12. 12.
    Hardy JW (1998) Adaptive optics for astronomical telescopes. Oxford University Press, OxfordGoogle Scholar
  13. 13.
    Neil MA, Juskaitis R, Booth MJ et al (2000) Adaptive aberration correction in a two-photon microscope. J Microsc 200(Pt 2):105–108PubMedCrossRefGoogle Scholar
  14. 14.
    Lutz C, Otis TS, DeSars V et al (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827PubMedCrossRefGoogle Scholar
  15. 15.
    Booth MJ (2007) Adaptive optics in microscopy. Philos Transact A Math Phys Eng Sci 365:2829–2843PubMedCrossRefGoogle Scholar
  16. 16.
    Eriksen R, Daria V, Gluckstad J (2002) Fully dynamic multiple-beam optical tweezers. Opt Express 10:597–602PubMedGoogle Scholar
  17. 17.
    Melville H, Milne G, Spalding G et al (2003) Optical trapping of three-dimensional structures using dynamic holograms. Opt Express 11:3562–3567PubMedCrossRefGoogle Scholar
  18. 18.
    van der Horst A, Forde NR (2008) Calibration of dynamic holographic optical tweezers for force measurements on biomaterials. Opt Express 16:20987–21003PubMedCrossRefGoogle Scholar
  19. 19.
    Bowman R, Gibson G, Padgett M (2010) Particle tracking stereomicroscopy in optical tweezers: control of trap shape. Opt Express 18:11785–11790PubMedCrossRefGoogle Scholar
  20. 20.
    Cojoc D, Difato F, Ferrari E et al (2007) Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS One 2:e1072PubMedCrossRefGoogle Scholar
  21. 21.
    Mejean CO, Schaefer AW, Millman EA et al (2009) Multiplexed force measurements on live cells with holographic optical tweezers. Opt Express 17:6209–6217PubMedCrossRefGoogle Scholar
  22. 22.
    Ji N, Milkie DE, Betzig E (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7:141–147PubMedCrossRefGoogle Scholar
  23. 23.
    Heintzman R (2010) Correcting distorted optics: back to the basic. Nat Photonics 7:108–110Google Scholar
  24. 24.
    Zahid M, Velez-Fort M, Papagiakoumou E et al (2010) Holographic photolysis for multiple cell stimulation in mouse hippocampal slices. PLoS One 5:e9431PubMedCrossRefGoogle Scholar
  25. 25.
    Nikolenko V, Watson BO, Araya R et al (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits 2:5–19PubMedCrossRefGoogle Scholar
  26. 26.
    Goodman JW (2005) Introduction to Fourier optics. Roberts & Company, Greenwood Village, COGoogle Scholar
  27. 27.
    Khoo IA (2007) Liquid crystals. Wiley, Hoboken, NJCrossRefGoogle Scholar
  28. 28.
    Vicari L (2003) Optical applications of liquid crystals. Institute of Physics Publishing Ltd, LondonCrossRefGoogle Scholar
  29. 29.
    Efron U (1994) Spatial light modulator technology: material, devices and applications. Marcel Dekker Inc., New York, NYGoogle Scholar
  30. 30.
    Dayton D, Browne S, Gonglewski J et al (2001) Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction. Appl Opt 40:2345–2355PubMedCrossRefGoogle Scholar
  31. 31.
    Dal Maschio M, Difato F, Beltramo R et al (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18:18720–18731PubMedCrossRefGoogle Scholar
  32. 32.
    Nikolenko V, Peterka DS, Yuste R (2010) A portable laser photostimulation and imaging microscope. J Neural Eng 7:045001PubMedCrossRefGoogle Scholar
  33. 33.
    Peron S, Svoboda K (2011) From cudgel to scalpel: toward precise neural control with optogenetics. Nat Methods 8:30–34PubMedCrossRefGoogle Scholar
  34. 34.
    Andrasfalvy BK, Zemelman BV, Tang J et al (2010) Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci USA 107:11981–11986PubMedCrossRefGoogle Scholar
  35. 35.
    Papagiakoumou E, Anselmi F, Begue A et al (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7:848–854PubMedCrossRefGoogle Scholar
  36. 36.
    Palima D, Alonzo CA, Rodrigo PJ et al (2007) Generalized phase contrast matched to Gaussian illumination. Opt Express 15:11971–11977PubMedCrossRefGoogle Scholar
  37. 37.
    Gluckstad J, Palima D (2010) Generalized phase contrast. Springer in association with Canopus Academic Publishing Limited, Dordrecht, NEGoogle Scholar
  38. 38.
    Lee WM, Reece PJ, Marchington RF et al (2007) Construction and calibration of an optical trap on a fluorescence optical microscope. Nat Protoc 2:3226–3238PubMedCrossRefGoogle Scholar
  39. 39.
    Martin-Badosa E, Montes-Usategui M, Carnicer A et al (2007) Design strategies for optimizing holographic optical tweezers set-ups. J Opt A Pure Appl Opt 9:S267–S277CrossRefGoogle Scholar
  40. 40.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedCrossRefGoogle Scholar
  41. 41.
    Papagiakoumou E, de Sars V, Oron D et al (2008) Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt Express 16:22039–22047PubMedCrossRefGoogle Scholar
  42. 42.
    Shaevitz JW, Fletcher DA (2007) Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function. J Opt Soc Am A Opt Image Sci Vis 24:2622–2627PubMedCrossRefGoogle Scholar
  43. 43.
    Doering LC (2010) Protocols for neural cell culture. Springer, HeidelbergCrossRefGoogle Scholar
  44. 44.
    Daria VR, Stricker C, Bowman R et al (2009) Arbitrary multisite two-photon excitation in four dimensions. Appl Phys Lett 95:093701-1–093701-3CrossRefGoogle Scholar
  45. 45.
    Liesener J, Reicherter M, Haist T et al (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185:77–82CrossRefGoogle Scholar
  46. 46.
    Leach J, Wulff K, Sinclair G et al (2006) Interactive approach to optical tweezers control. Appl Opt 45:897–903PubMedCrossRefGoogle Scholar
  47. 47.
    Zalevsky Z, Mendlovic D, Dorsch RG (1996) Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Opt Lett 21:842–844PubMedCrossRefGoogle Scholar
  48. 48.
    Golan L, Reutsky I, Farah N et al (2009) Design and characteristics of holographic neural photo-stimulation systems. J Neural Eng 6:066004PubMedCrossRefGoogle Scholar
  49. 49.
    Papagiakoumou E, de Sars V, Emiliani V et al (2009) Temporal focusing with spatially modulated excitation. Opt Express 17:5391–5401PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Francesco Difato
    • 1
  • Marco Dal Maschio
    • 1
  • Riccardo Beltramo
    • 1
  • Axel Blau
    • 1
  • Fabio Benfenati
    • 1
  • Tommaso Fellin
    • 1
  1. 1.Department of Neuroscience and Brain TechnologiesItalian Institute of TechnologyGenoaItaly

Personalised recommendations