Advertisement

Computational Design of Multitarget Drugs Against Alzheimer’s Disease

  • Sotirios Katsamakas
  • Dimitra Hadjipavlou-Litina
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

In the present review, the authors provide the basic background about the molecular targets implicated in the pathogenesis of Alzheimer’s disease. Furthermore, the authors review structure–activity relationships (SAR), 2D- and 3D-quantitative structure–activity relationships (QSAR), as well as other computational modeling studies performed on multitarget agents for Alzheimer’s disease.

The information provided includes chemical structures of multitarget agents and/or of hybrids acting on several molecular target enzymes implicated in the Alzheimer’s disease pathogenesis and information for the used computational techniques. This should be useful in the development of new multitarget drugs with clinical applicability in Alzheimer’s disease.

Keywords

Alzheimer’s disease Docking Modeling Multitarget agents QSAR 

References

  1. 1.
    Mitra A, Dey B (2013) Therapeutic interventions in Alzheimer disease. In: Neurodegenerative diseases. InTech, LondonGoogle Scholar
  2. 2.
    Silva T, Reis J, Teixeira J, Borges F (2014) Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 15:116–145.  https://doi.org/10.1016/j.arr.2014.03.008CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng X, Zhang L, Lian Y-J (2015) Molecular targets in Alzheimer’s disease: from pathogenesis to therapeutics. Biomed Res Int 2015:760758PubMedPubMedCentralGoogle Scholar
  4. 4.
    Grill JD, Cummings JL (2010) Novel targets for Alzheimer’s disease treatment. Expert Rev Neurother 10(5):711CrossRefGoogle Scholar
  5. 5.
    Kumar A, Nisha CM, Silakari C, Sharma I, Anusha K, Gupta N, Nair P, Tripathi T (2016) Current and novel therapeutic molecules and targets in Alzheimer's disease. J Formos Med Assoc 115(1):3–10.  https://doi.org/10.1016/j.jfma.2015.04.001CrossRefPubMedGoogle Scholar
  6. 6.
    Nicolotti O, Giangreco I, Introcaso A, Leonetti F, Stefanachi A, Carotti A (2011) Strategies of multi-objective optimization in drug discovery and development. Expert Opin Drug Discov 6(9):871–884.  https://doi.org/10.1517/17460441.2011.588696CrossRefGoogle Scholar
  7. 7.
    Dobi K, Hajdu I, Flachner B, Fabo G, Szaszko M, Bognar M, Magyar C, Simon I, Szisz D, Lorincz Z, Cseh S, Dorman G (2014) Combination of 2D/3D ligand-based similarity search in rapid virtual screening from multimillion compound repositories. Selection and biological evaluation of potential PDE4 and PDE5 inhibitors. Molecules 19(6):7008–7039.  https://doi.org/10.3390/molecules19067008CrossRefPubMedGoogle Scholar
  8. 8.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768.  https://doi.org/10.1021/ci3001277CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182.  https://doi.org/10.1021/ci049714+CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337.  https://doi.org/10.1021/acs.jcim.5b00559CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213.  https://doi.org/10.1093/nar/gkv951CrossRefPubMedGoogle Scholar
  12. 12.
    Chemspider (2017) http://www.chemspider.com/
  13. 13.
    ChEMBLdb (2017) Release 23. https://www.ebi.ac.uk/chembl/downloads
  14. 14.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242.  https://doi.org/10.1093/nar/28.1.235CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40(web server issue):W597–W603.  https://doi.org/10.1093/nar/gks400CrossRefGoogle Scholar
  16. 16.
    Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341.  https://doi.org/10.1016/j.ddtec.2004.11.007CrossRefPubMedGoogle Scholar
  17. 17.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26.  https://doi.org/10.1016/S0169-409X(00)00129-0CrossRefGoogle Scholar
  18. 18.
    Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740.  https://doi.org/10.1021/jm901137jCrossRefPubMedGoogle Scholar
  19. 19.
    Brus B, Kosak U, Turk S, Pislar A, Coquelle N, Kos J, Stojan J, Colletier JP, Gobec S (2014) Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J Med Chem 57(19):8167–8179.  https://doi.org/10.1021/jm501195eCrossRefPubMedGoogle Scholar
  20. 20.
    Messer WS Jr, Rajeswaran WG, Cao Y, Zhang HJ, el-Assadi AA, Dockery C, Liske J, O'Brien J, Williams FE, Huang XP, Wroblewski ME, Nagy PI, Peseckis SM (2000) Design and development of selective muscarinic agonists for the treatment of Alzheimer’s disease: characterization of tetrahydropyrimidine derivatives and development of new approaches for improved affinity and selectivity for M1 receptors. Pharm Acta Helv 74(2–3):135–140.  https://doi.org/10.1016/S0031-6865(99)00026-6CrossRefPubMedGoogle Scholar
  21. 21.
    Nordvall G, Hacksell U (1993) Binding-site modeling of the muscarinic m1 receptor: a combination of homology-based and indirect approaches. J Med Chem 36(8):967–976.  https://doi.org/10.1021/jm00060a003CrossRefPubMedGoogle Scholar
  22. 22.
    Messer WS Jr, Abuh YF, Liu Y, Periyasamy S, Ngur DO, Edgar MA, El-Assadi AA, Sbeih S, Dunbar PG, Roknich S, Rho T, Fang Z, Ojo B, Zhang H, Huzl JJ 3rd, Nagy PI (1997) Synthesis and biological characterization of 1,4,5,6-tetrahydropyrimidine and 2-amino-3,4,5,6-tetrahydropyridine derivatives as selective m1 agonists. J Med Chem 40(8):1230–1246.  https://doi.org/10.1021/jm960467dCrossRefPubMedGoogle Scholar
  23. 23.
    Niu YY, Yang LM, Deng KM, Yao JH, Zhu L, Chen CY, Zhang M, Zhou JE, Shen TX, Chen HZ, Lu Y (2007) Quantitative structure-selectivity relationship for M2 selectivity between M1 and M2 of piperidinyl piperidine derivatives as muscarinic antagonists. Bioorg Med Chem Lett 17(8):2260–2266.  https://doi.org/10.1016/j.bmcl.2007.01.058CrossRefPubMedGoogle Scholar
  24. 24.
    Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967.  https://doi.org/10.1021/ja00226a005CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Y, Chackalamannil S, Hu Z, Clader JW, Greenlee W, Billard W, Binch H, Crosby G, Ruperto V, Duffy RA, McQuade R, Lachowicz JE (2000) Design and synthesis of piperidinyl piperidine analogues as potent and selective M2 muscarinic receptor antagonists. Bioorg Med Chem Lett 10(20):2247–2250.  https://doi.org/10.1016/s0960-894x(00)00457-1CrossRefPubMedGoogle Scholar
  26. 26.
    Nicolotti O, Pellegrini-Calace M, Altomar C, Carotti A, Carrieri A, Sanz F (2002) Ligands of neuronal nicotinic acetylcholine receptor (nAChR): inferences from the Hansch and 3-D quantitative structure-activity relationship (QSAR) models. Curr Med Chem 9(1):1–29.  https://doi.org/10.2174/0929867023371463CrossRefPubMedGoogle Scholar
  27. 27.
    Wei DQ, Sirois S, Du QS, Arias HR, Chou KC (2005) Theoretical studies of Alzheimer’s disease drug candidate 3-[(2,4-dimethoxy)benzylidene]-anabaseine (GTS-21) and its derivatives. Biochem Biophys Res Commun 338(2):1059–1064.  https://doi.org/10.1016/j.bbrc.2005.10.047CrossRefPubMedGoogle Scholar
  28. 28.
    Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411(6835):269–276.  https://doi.org/10.1038/35077011CrossRefPubMedGoogle Scholar
  29. 29.
    Kombo DC, Mazurov AA, Strachan JP, Bencherif M (2013) Computational studies of novel carbonyl-containing diazabicyclic ligands interacting with alpha4beta2 nicotinic acetylcholine receptor (nAChR) reveal alternative binding modes. Bioorg Med Chem Lett 23(18):5105–5113.  https://doi.org/10.1016/j.bmcl.2013.07.028CrossRefPubMedGoogle Scholar
  30. 30.
    Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y (2005) Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J 24(20):3635–3646.  https://doi.org/10.1038/sj.emboj.7600828CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Catto M, Nicolotti O, Leonetti F, Carotti A, Favia AD, Soto-Otero R, Méndez-Álvarez E, Carotti A (2006) Structural insights into monoamine oxidase inhibitory potency and selectivity of 7-substituted coumarins from ligand-and target-based approaches. J Med Chem 49(16):4912–4925CrossRefGoogle Scholar
  32. 32.
    Speck-Planche A, Kleandrova V (2012) QSAR and molecular docking techniques for the discovery of potent monoamine oxidase B inhibitors: computer-aided generation of new rasagiline bioisosteres. Curr Top Med Chem 12(16):1734–1747.  https://doi.org/10.2174/1568026611209061734CrossRefPubMedGoogle Scholar
  33. 33.
    Di Pietro O, Alencar N, Esteban G, Viayna E, Szalaj N, Vazquez J, Juarez-Jimenez J, Sola I, Perez B, Sole M, Unzeta M, Munoz-Torrero D, Luque FJ (2016) Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors. Bioorg Med Chem 24(20):4835–4854.  https://doi.org/10.1016/j.bmc.2016.06.045CrossRefPubMedGoogle Scholar
  34. 34.
    Esteban G, Allan J, Samadi A, Mattevi A, Unzeta M, Marco-Contelles J, Binda C, Ramsay RR (2014) Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer's disease. Biochim Biophys Acta 1844(6):1104–1110.  https://doi.org/10.1016/j.bbapap.2014.03.006CrossRefPubMedGoogle Scholar
  35. 35.
    De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci U S A 102(36):12684–12689.  https://doi.org/10.1073/pnas.0505975102CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hoang VH, Tran PT, Cui M, Ngo VT, Ann J, Park J, Lee J, Choi K, Cho H, Kim H, Ha HJ, Hong HS, Choi S, Kim YH (2017) Discovery of potent human glutaminyl cyclase inhibitors as anti-Alzheimer’s agents based on rational design. J Med Chem 60(6):2573–2590.  https://doi.org/10.1021/acs.jmedchem.7b00098CrossRefPubMedGoogle Scholar
  37. 37.
    Huang KF, Liaw SS, Huang WL, Chia CY, Lo YC, Chen YL, Wang AH (2011) Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. J Biol Chem 286(14):12439–12449.  https://doi.org/10.1074/jbc.M110.208595CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhao L, Brinton RD (2006) Select estrogens within the complex formulation of conjugated equine estrogens (Premarin®) are protective against neurodegenerative insults: implications for a composition of estrogen therapy to promote neuronal function and prevent Alzheimer’s disease. BMC Neurosci 7(1):24CrossRefGoogle Scholar
  39. 39.
    Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652):753–758.  https://doi.org/10.1038/39645CrossRefPubMedGoogle Scholar
  40. 40.
    Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283(9):5918–5927.  https://doi.org/10.1074/jbc.M705943200CrossRefPubMedGoogle Scholar
  41. 41.
    Hanger DP, Noble W (2011) Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimers Dis 2011:352805.  https://doi.org/10.4061/2011/352805CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cadigan KM, Waterman ML (2012) TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 4(11).  https://doi.org/10.1101/cshperspect.a007906CrossRefGoogle Scholar
  43. 43.
    Zorn AM (2001) Wnt signalling: antagonistic Dickkopfs. Curr Biol 11(15):R592–R595.  https://doi.org/10.1016/S0960-9822(01)00360-8CrossRefPubMedGoogle Scholar
  44. 44.
    Rosi MC, Luccarini I, Grossi C, Fiorentini A, Spillantini MG, Prisco A, Scali C, Gianfriddo M, Caricasole A, Terstappen GC, Casamenti F (2010) Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J Neurochem 112(6):1539–1551.  https://doi.org/10.1111/j.1471-4159.2009.06566.xCrossRefPubMedGoogle Scholar
  45. 45.
    Caricasole A, Copani A, Caraci F, Aronica E, Rozemuller AJ, Caruso A, Storto M, Gaviraghi G, Terstappen GC, Nicoletti F (2004) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci 24(26):6021–6027.  https://doi.org/10.1523/JNEUROSCI.1381-04.2004CrossRefPubMedGoogle Scholar
  46. 46.
    Glantschnig H, Hampton RA, Lu P, Zhao JZ, Vitelli S, Huang L, Haytko P, Cusick T, Ireland C, Jarantow SW, Ernst R, Wei N, Nantermet P, Scott KR, Fisher JE, Talamo F, Orsatti L, Reszka AA, Sandhu P, Kimmel D, Flores O, Strohl W, An Z, Wang F (2010) Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem 285(51):40135–40147.  https://doi.org/10.1074/jbc.M110.166892CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mpousis S, Thysiadis S, Avramidis N, Katsamakas S, Efthimiopoulos S, Sarli V (2016) Synthesis and evaluation of gallocyanine dyes as potential agents for the treatment of Alzheimer’s disease and related neurodegenerative tauopathies. Eur J Med Chem 108:28–38.  https://doi.org/10.1016/j.ejmech.2015.11.024CrossRefPubMedGoogle Scholar
  48. 48.
    Thysiadis S, Mpousis S, Avramidis N, Katsamakas S, Balomenos A, Remelli R, Efthimiopoulos S, Sarli V (2016) Discovery of novel phenoxazinone derivatives as DKK1/LRP6 interaction inhibitors: synthesis, biological evaluation and structure-activity relationships. Bioorg Med Chem 24(5):1014–1022.  https://doi.org/10.1016/j.bmc.2016.01.025CrossRefPubMedGoogle Scholar
  49. 49.
    Cheng Z, Biechele T, Wei Z, Morrone S, Moon RT, Wang L, Xu W (2011) Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 18(11):1204–1210 http://www.nature.com/nsmb/journal/v18/n11/abs/nsmb.2139.html#supplementary-informationCrossRefGoogle Scholar
  50. 50.
    Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106):733–736.  https://doi.org/10.1038/325733a0CrossRefPubMedGoogle Scholar
  51. 51.
    Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639.  https://doi.org/10.1038/nature02621CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Citron M, Teplow DB, Selkoe DJ (1995) Generation of amyloid β protein from its precursor is sequence specific. Neuron 14(3):661–670CrossRefGoogle Scholar
  53. 53.
    Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4(1):3.  https://doi.org/10.1186/1756-6606-4-3CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gundersen E, Fan K, Haas K, Huryn D, Steven Jacobsen J, Kreft A, Martone R, Mayer S, Sonnenberg-Reines J, Sun SC, Zhou H (2005) Molecular-modeling based design, synthesis, and activity of substituted piperidines as gamma-secretase inhibitors. Bioorg Med Chem Lett 15(7):1891–1894.  https://doi.org/10.1016/j.bmcl.2005.02.006CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu YP, Xiao K, Yu HP, Ma LP, Xiong B, Zhang HY, Wang X, Li JY, Li J, Shen JK (2009) Discovery of potent beta-secretase (bace-1) inhibitors by the synthesis of isophthalamide-containing hybrids. Acta Pharmacol Sin 30(2):259–269.  https://doi.org/10.1038/aps.2008.26CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Coburn CA, Stachel SJ, Li YM, Rush DM, Steele TG, Chen-Dodson E, Holloway MK, Xu M, Huang Q, Lai MT, DiMuzio J, Crouthamel MC, Shi XP, Sardana V, Chen Z, Munshi S, Kuo L, Makara GM, Annis DA, Tadikonda PK, Nash HM, Vacca JP, Wang T (2004) Identification of a small molecule nonpeptide active site beta-secretase inhibitor that displays a nontraditional binding mode for aspartyl proteases. J Med Chem 47(25):6117–6119.  https://doi.org/10.1021/jm049388pCrossRefPubMedGoogle Scholar
  57. 57.
    Stachel SJ, Coburn CA, Steele TG, Jones KG, Loutzenhiser EF, Gregro AR, Rajapakse HA, Lai MT, Crouthamel MC, Xu M, Tugusheva K, Lineberger JE, Pietrak BL, Espeseth AS, Shi XP, Chen-Dodson E, Holloway MK, Munshi S, Simon AJ, Kuo L, Vacca JP (2004) Structure-based design of potent and selective cell-permeable inhibitors of human beta-secretase (BACE-1). J Med Chem 47(26):6447–6450.  https://doi.org/10.1021/jm049379gCrossRefPubMedGoogle Scholar
  58. 58.
    Al-Tel TH, Semreen MH, Al-Qawasmeh RA, Schmidt MF, El-Awadi R, Ardah M, Zaarour R, Rao SN, El-Agnaf O (2011) Design, synthesis, and qualitative structure–activity evaluations of novel β-Secretase inhibitors as potential Alzheimer’s drug leads. J Med Chem 54(24):8373–8385CrossRefGoogle Scholar
  59. 59.
    Stachel SJ, Coburn CA, Steele TG, Crouthamel MC, Pietrak BL, Lai MT, Holloway MK, Munshi SK, Graham SL, Vacca JP (2006) Conformationally biased P3 amide replacements of beta-secretase inhibitors. Bioorg Med Chem Lett 16(3):641–644.  https://doi.org/10.1016/j.bmcl.2005.10.032CrossRefPubMedGoogle Scholar
  60. 60.
    Ajmani S, Janardhan S, Viswanadhan VN (2013) Toward a general predictive QSAR model for gamma-secretase inhibitors. Mol Divers 17(3):421–434.  https://doi.org/10.1007/s11030-013-9441-2CrossRefPubMedGoogle Scholar
  61. 61.
    Semighini EP (2015) In silico design of beta-secretase inhibitors in Alzheimer’s disease. Chem Biol Drug Des 86(3):284–290.  https://doi.org/10.1111/cbdd.12492CrossRefPubMedGoogle Scholar
  62. 62.
    Clarke B, Demont E, Dingwall C, Dunsdon R, Faller A, Hawkins J, Hussain I, MacPherson D, Maile G, Matico R, Milner P, Mosley J, Naylor A, O’Brien A, Redshaw S, Riddell D, Rowland P, Soleil V, Smith KJ, Stanway S, Stemp G, Sweitzer S, Theobald P, Vesey D, Walter DS, Ward J, Wayne G (2008) BACE-1 inhibitors part 2: identification of hydroxy ethylamines (HEAs) with reduced peptidic character. Bioorg Med Chem Lett 18(3):1017–1021.  https://doi.org/10.1016/j.bmcl.2007.12.019CrossRefPubMedGoogle Scholar
  63. 63.
    Charrier N, Clarke B, Cutler L, Demont E, Dingwall C, Dunsdon R, East P, Hawkins J, Howes C, Hussain I, Jeffrey P, Maile G, Matico R, Mosley J, Naylor A, O’Brien A, Redshaw S, Rowland P, Soleil V, Smith KJ, Sweitzer S, Theobald P, Vesey D, Walter DS, Wayne G (2008) Second generation of hydroxyethylamine BACE-1 inhibitors: optimizing potency and oral bioavailability. J Med Chem 51(11):3313–3317.  https://doi.org/10.1021/jm800138hCrossRefPubMedGoogle Scholar
  64. 64.
    Charrier N, Clarke B, Demont E, Dingwall C, Dunsdon R, Hawkins J, Hubbard J, Hussain I, Maile G, Matico R, Mosley J, Naylor A, O’Brien A, Redshaw S, Rowland P, Soleil V, Smith KJ, Sweitzer S, Theobald P, Vesey D, Walter DS, Wayne G (2009) Second generation of BACE-1 inhibitors. Part 2: Optimisation of the non-prime side substituent. Bioorg Med Chem Lett 19(13):3669–3673.  https://doi.org/10.1016/j.bmcl.2009.03.150CrossRefPubMedGoogle Scholar
  65. 65.
    Charrier N, Clarke B, Cutler L, Demont E, Dingwall C, Dunsdon R, Hawkins J, Howes C, Hubbard J, Hussain I, Maile G, Matico R, Mosley J, Naylor A, O’Brien A, Redshaw S, Rowland P, Soleil V, Smith KJ, Sweitzer S, Theobald P, Vesey D, Walter DS, Wayne G (2009) Second generation of BACE-1 inhibitors. Part 1: The need for improved pharmacokinetics. Bioorg Med Chem Lett 19(13):3664–3668.  https://doi.org/10.1016/j.bmcl.2009.03.165CrossRefPubMedGoogle Scholar
  66. 66.
    Beswick P, Charrier N, Clarke B, Demont E, Dingwall C, Dunsdon R, Faller A, Gleave R, Hawkins J, Hussain I, Johnson CN, MacPherson D, Maile G, Matico R, Milner P, Mosley J, Naylor A, O’Brien A, Redshaw S, Riddell D, Rowland P, Skidmore J, Soleil V, Smith KJ, Stanway S, Stemp G, Stuart A, Sweitzer S, Theobald P, Vesey D, Walter DS, Ward J, Wayne G (2008) BACE-1 inhibitors part 3: identification of hydroxy ethylamines (HEAs) with nanomolar potency in cells. Bioorg Med Chem Lett 18(3):1022–1026.  https://doi.org/10.1016/j.bmcl.2007.12.020CrossRefPubMedGoogle Scholar
  67. 67.
    Edraki N, Firuzi O, Fatahi Y, Mahdavi M, Asadi M, Emami S, Divsalar K, Miri R, Iraji A, Khoshneviszadeh M (2015) N-(2-(Piperazin-1-yl) phenyl) arylamide derivatives as β-secretase (BACE1) inhibitors: simple synthesis by Ugi four-component reaction and biological evaluation. Arch Pharm 348(5):330–337CrossRefGoogle Scholar
  68. 68.
    Zeng H, Wu X (2016) Alzheimer’s disease drug development based on computer-aided drug design. Eur J Med Chem 121:851–863.  https://doi.org/10.1016/j.ejmech.2015.08.039CrossRefPubMedGoogle Scholar
  69. 69.
    Hernandez-Rodriguez M, Correa-Basurto J, Gutierrez A, Vitorica J, Rosales-Hernandez MC (2016) Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations. Eur J Med Chem 124:1142–1154.  https://doi.org/10.1016/j.ejmech.2016.08.028CrossRefPubMedGoogle Scholar
  70. 70.
    Iserloh U, Wu Y, Cumming JN, Pan J, Wang LY, Stamford AW, Kennedy ME, Kuvelkar R, Chen X, Parker EM, Strickland C, Voigt J (2008) Potent pyrrolidine- and piperidine-based BACE-1 inhibitors. Bioorg Med Chem Lett 18(1):414–417.  https://doi.org/10.1016/j.bmcl.2007.10.116CrossRefPubMedGoogle Scholar
  71. 71.
    Ostermann N, Eder J, Eidhoff U, Zink F, Hassiepen U, Worpenberg S, Maibaum J, Simic O, Hommel U, Gerhartz B (2006) Crystal structure of human BACE2 in complex with a hydroxyethylamine transition-state inhibitor. J Mol Biol 355(2):249–261.  https://doi.org/10.1016/j.jmb.2005.10.027CrossRefPubMedGoogle Scholar
  72. 72.
    Lee AY, Gulnik SV, Erickson JW (1998) Conformational switching in an aspartic proteinase. Nat Struct Biol 5(10):866–871.  https://doi.org/10.1038/2306CrossRefPubMedGoogle Scholar
  73. 73.
    Tarazi H, Odeh RA, Al-Qawasmeh R, Yousef IA, Voelter W, Al-Tel TH (2017) Design, synthesis and SAR analysis of potent BACE1 inhibitors: possible lead drug candidates for Alzheimer’s disease. Eur J Med Chem 125:1213–1224.  https://doi.org/10.1016/j.ejmech.2016.11.021CrossRefPubMedGoogle Scholar
  74. 74.
    Coburn CA, Stachel SJ, Jones KG, Steele TG, Rush DM, DiMuzio J, Pietrak BL, Lai MT, Huang Q, Lineberger J, Jin L, Munshi S, Katharine Holloway M, Espeseth A, Simon A, Hazuda D, Graham SL, Vacca JP (2006) BACE-1 inhibition by a series of psi[CH2NH] reduced amide isosteres. Bioorg Med Chem Lett 16(14):3635–3638.  https://doi.org/10.1016/j.bmcl.2006.04.076CrossRefPubMedGoogle Scholar
  75. 75.
    Steele TG, Hills ID, Nomland AA, de Leon P, Allison T, McGaughey G, Colussi D, Tugusheva K, Haugabook SJ, Espeseth AS, Zuck P, Graham SL, Stachel SJ (2009) Identification of a small molecule beta-secretase inhibitor that binds without catalytic aspartate engagement. Bioorg Med Chem Lett 19(1):17–20.  https://doi.org/10.1016/j.bmcl.2008.11.027CrossRefPubMedGoogle Scholar
  76. 76.
    Prade E, Bittner HJ, Sarkar R, Lopez Del Amo JM, Althoff-Ospelt G, Multhaup G, Hildebrand PW, Reif B (2015) Structural mechanism of the interaction of Alzheimer disease Abeta fibrils with the non-steroidal anti-inflammatory drug (NSAID) sulindac sulfide. J Biol Chem 290(48):28737–28745.  https://doi.org/10.1074/jbc.M115.675215CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Paravastu AK, Leapman RD, Yau WM, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci U S A 105(47):18349–18354.  https://doi.org/10.1073/pnas.0806270105CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    de Almeida JP, Saldanha C (2010) Nonneuronal cholinergic system in human erythrocytes: biological role and clinical relevance. J Membr Biol 234(3):227–234.  https://doi.org/10.1007/s00232-010-9250-9CrossRefPubMedGoogle Scholar
  79. 79.
    Brimijoin S (1983) Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog Neurobiol 21(4):291–322CrossRefGoogle Scholar
  80. 80.
    Heller M, Hanahan DJ (1972) Human erythrocyte membrane bound enzyme acetylcholinesterase. Biochim Biophys Acta 255(1):251–272CrossRefGoogle Scholar
  81. 81.
    Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1–3):10–22.  https://doi.org/10.1016/j.cbi.2010.01.042CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Silman I, Sussman JL (2008) Acetylcholinesterase: how is structure related to function? Chem Biol Interact 175(1–3):3–10CrossRefGoogle Scholar
  83. 83.
    Lane RM, Kivipelto M, Greig NH (2004) Acetylcholinesterase and its inhibition in Alzheimer disease. Clin Neuropharmacol 27(3):141–149CrossRefGoogle Scholar
  84. 84.
    Lane RM, Potkin SG, Enz A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9(1):101–124.  https://doi.org/10.1017/S1461145705005833CrossRefPubMedGoogle Scholar
  85. 85.
    Recanatini M, Cavalli A, Hansch C (1997) A comparative QSAR analysis of acetylcholinesterase inhibitors currently studied for the treatment of Alzheimer’s disease. Chem Biol Interact 105(3):199–228.  https://doi.org/10.1016/S0009-2797(97)00047-1CrossRefPubMedGoogle Scholar
  86. 86.
    Sippl W, Contreras JM, Parrot I, Rival YM, Wermuth CG (2001) Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors. J Comput Aided Mol Des 15(5):395–410CrossRefGoogle Scholar
  87. 87.
    Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL (1993) Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A 90(19):9031–9035CrossRefGoogle Scholar
  88. 88.
    Ravelli RB, Raves ML, Ren Z, Bourgeois D, Roth M, Kroon J, Silman I, Sussman JL (1998) Static Laue diffraction studies on acetylcholinesterase. Acta Crystallogr D Biol Crystallogr 54(Pt 6 Pt 2):1359–1366.  https://doi.org/10.1107/s0907444998005277CrossRefPubMedGoogle Scholar
  89. 89.
    Raves ML, Harel M, Pang Y-P, Silman I, Kozikowski AP, Sussman JL (1997) Structure of acetylcholinesterase complexed with the nootropic alkaloid, (−)-huperzine A. Nat Struct Mol Biol 4(1):57–63.  https://doi.org/10.1038/nsb0197-57CrossRefGoogle Scholar
  90. 90.
    Kosak U, Brus B, Knez D, Zakelj S, Trontelj J, Pislar A, Sink R, Jukic M, Zivin M, Podkowa A, Nachon F, Brazzolotto X, Stojan J, Kos J, Coquelle N, Salat K, Colletier JP, Gobec S (2017) The magic of crystal structure-based inhibitor optimization: development of a butyrylcholinesterase inhibitor with picomolar affinity and in vivo activity. J Med Chem.  https://doi.org/10.1021/acs.jmedchem.7b01086CrossRefGoogle Scholar
  91. 91.
    da Silva CH, Campo VL, Carvalho I, Taft CA (2006) Molecular modeling, docking and ADMET studies applied to the design of a novel hybrid for treatment of Alzheimer’s disease. J Mol Graph Model 25(2):169–175.  https://doi.org/10.1016/j.jmgm.2005.12.002CrossRefPubMedGoogle Scholar
  92. 92.
    Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept (R)): implications for the design of new anti-Alzheimer drugs. Structure 7(3):297–307.  https://doi.org/10.1016/S0969-2126(99)80040-9CrossRefPubMedGoogle Scholar
  93. 93.
    Alcaro S, Arcone R, Vecchio I, Ortuso F, Gallelli A, Pasceri R, Procopio A, Iannone M (2007) Molecular modelling and enzymatic studies of acetylcholinesterase and butyrylcholinesterase recognition with paraquat and related compounds. SAR QSAR Environ Res 18(5–6):595–602.  https://doi.org/10.1080/10629360701428433CrossRefPubMedGoogle Scholar
  94. 94.
    da Silva CH, Carvalho I, Taft CA (2007) Virtual screening, molecular interaction field, molecular dynamics, docking, density functional, and ADMET properties of novel AChE inhibitors in Alzheimer’s disease. J Biomol Struct Dyn 24(6):515–524.  https://doi.org/10.1080/07391102.2007.10507140CrossRefPubMedGoogle Scholar
  95. 95.
    Fang L, Appenroth D, Decker M, Kiehntopf M, Lupp A, Peng SX, Fleck C, Zhang YH, Lehmann JC (2008) NO-donating tacrine hybrid compounds improve scopolamine-induced cognition impairment and show less hepatotoxicity. J Med Chem 51(24):7666–7669.  https://doi.org/10.1021/jm801131aCrossRefPubMedGoogle Scholar
  96. 96.
    Rydberg EH, Brumshtein B, Greenblatt HM, Wong DM, Shaya D, Williams LD, Carlier PR, Pang YP, Silman I, Sussman JL (2006) Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge. J Med Chem 49(18):5491–5500.  https://doi.org/10.1021/jm060164bCrossRefPubMedGoogle Scholar
  97. 97.
    Badran MM, Abdel Hakeem M, Abuel-Maaty SM, El-Malah A, Abdel Salam RM (2010) Design, synthesis, and molecular-modeling study of aminothienopyridine analogues of tacrine for Alzheimer’s disease. Arch Pharm (Weinheim) 343(10):590–601.  https://doi.org/10.1002/ardp.200900226CrossRefGoogle Scholar
  98. 98.
    Geromichalos GD, Lamari FN, Papandreou MA, Trafalis DT, Margarity M, Papageorgiou A, Sinakos Z (2012) Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studies. J Agric Food Chem 60(24):6131–6138.  https://doi.org/10.1021/jf300589cCrossRefPubMedGoogle Scholar
  99. 99.
    El-Malah A, Gedawy EM, Kassab AE, Salam RMA (2014) Novel tacrine analogs as potential cholinesterase inhibitors in Alzheimer’s disease. Arch Pharm 347(2):96–103CrossRefGoogle Scholar
  100. 100.
    Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278(42):41141–41147.  https://doi.org/10.1074/jbc.M210241200CrossRefPubMedGoogle Scholar
  101. 101.
    Arab S, Sadat-Ebrahimi SE, Mohammadi-Khanaposhtani M, Moradi A, Nadri H, Mahdavi M, Moghimi S, Asadi M, Firoozpour L, Pirali-Hamedani M, Shafiee A, Foroumadi A (2015) Synthesis and evaluation of chroman-4-one linked to N-benzyl pyridinium derivatives as new acetylcholinesterase inhibitors. Arch Pharm 348(9):643–649.  https://doi.org/10.1002/ardp.201500149CrossRefGoogle Scholar
  102. 102.
    Liu Z, Fang L, Zhang H, Gou S, Chen L (2017) Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg Med Chem 25(8):2387–2398.  https://doi.org/10.1016/j.bmc.2017.02.049CrossRefPubMedGoogle Scholar
  103. 103.
    Nachon F, Carletti E, Ronco C, Trovaslet M, Nicolet Y, Jean L, Renard PY (2013) Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem J 453(3):393–399.  https://doi.org/10.1042/BJ20130013CrossRefPubMedGoogle Scholar
  104. 104.
    Mehrabi F, Pourshojaei Y, Moradi A, Sharifzadeh M, Khosravani L, Sabourian R, Rahmani-Nezhad S, Mohammadi-Khanaposhtani M, Mahdavi M, Asadipour A, Rahimi HR, Moghimi S, Foroumadi A (2017) Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain. Future Med Chem 9(7):659–671.  https://doi.org/10.4155/fmc-2016-0237CrossRefPubMedGoogle Scholar
  105. 105.
    da Silva Goncalves A, Franca TC, Vital de Oliveira O (2016) Computational studies of acetylcholinesterase complexed with fullerene derivatives: a new insight for Alzheimer disease treatment. J Biomol Struct Dyn 34(6):1307–1316.  https://doi.org/10.1080/07391102.2015.1077345CrossRefPubMedGoogle Scholar
  106. 106.
    Carletti E, Colletier JP, Dupeux F, Trovaslet M, Masson P, Nachon F (2010) Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation. J Med Chem 53(10):4002–4008.  https://doi.org/10.1021/jm901853bCrossRefPubMedGoogle Scholar
  107. 107.
    Basiri A, Xiao M, McCarthy A, Dutta D, Byrareddy SN, Conda-Sheridan M (2017) Design and synthesis of new piperidone grafted acetylcholinesterase inhibitors. Bioorg Med Chem Lett 27(2):228–231.  https://doi.org/10.1016/j.bmcl.2016.11.065CrossRefPubMedGoogle Scholar
  108. 108.
    Yu Q, Holloway HW, Flippen-Anderson JL, Hoffman B, Brossi A, Greig NH (2001) Methyl analogues of the experimental Alzheimer drug phenserine: synthesis and structure/activity relationships for acetyl- and butyrylcholinesterase inhibitory action. J Med Chem 44(24):4062–4071CrossRefGoogle Scholar
  109. 109.
    Camps P, Formosa X, Galdeano C, Munoz-Torrero D, Ramírez L, Gómez E, Isambert N, Lavilla R, Badia A, Clos MV (2009) Pyrano [3, 2-c] quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase-and β-amyloid-directed anti-Alzheimer compounds. J Med Chem 52(17):5365–5379CrossRefGoogle Scholar
  110. 110.
    Bourne Y, Kolb HC, Radic Z, Sharpless KB, Taylor P, Marchot P (2004) Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc Natl Acad Sci U S A 101(6):1449–1454.  https://doi.org/10.1073/pnas.0308206100CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Haviv H, Wong DM, Greenblatt HM, Carlier PR, Pang YP, Silman I, Sussman JL (2005) Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase. J Am Chem Soc 127(31):11029–11036.  https://doi.org/10.1021/ja051765fCrossRefPubMedGoogle Scholar
  112. 112.
    Ul-Haq Z, Khan W, Kalsoom S, Ansari FL (2010) In silico modeling of the specific inhibitory potential of thiophene-2,3-dihydro-1,5-benzothiazepine against BChE in the formation of beta-amyloid plaques associated with Alzheimer’s disease. Theor Biol Med Model 7(1):22.  https://doi.org/10.1186/1742-4682-7-22CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Hamulakova S, Janovec L, Hrabinova M, Kristian P, Kuca K, Banasova M, Imrich J (2012) Synthesis, design and biological evaluation of novel highly potent tacrine congeners for the treatment of Alzheimer’s disease. Eur J Med Chem 55:23–31.  https://doi.org/10.1016/j.ejmech.2012.06.051CrossRefPubMedGoogle Scholar
  114. 114.
    Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL (2000) Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr D Biol Crystallogr 56(Pt 11):1385–1394.  https://doi.org/10.1107/S0907444900010659CrossRefPubMedGoogle Scholar
  115. 115.
    Makhaeva GF, Radchenko EV, Baskin II, Palyulin VA, Richardson RJ, Zefirov NS (2012) Combined QSAR studies of inhibitor properties of O-phosphorylated oximes toward serine esterases involved in neurotoxicity, drug metabolism and Alzheimer’s disease. SAR QSAR Environ Res 23(7–8):627–647.  https://doi.org/10.1080/1062936X.2012.679690CrossRefPubMedGoogle Scholar
  116. 116.
    Bourne Y, Radic Z, Sulzenbacher G, Kim E, Taylor P, Marchot P (2006) Substrate and product trafficking through the active center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding. J Biol Chem 281(39):29256–29267.  https://doi.org/10.1074/jbc.M603018200CrossRefPubMedGoogle Scholar
  117. 117.
    Ozturan Ozer E, Tan OU, Ozadali K, Kucukkilinc T, Balkan A, Ucar G (2013) Synthesis, molecular modeling and evaluation of novel N′-2-(4-benzylpiperidin-/piperazin-1-yl)acylhydrazone derivatives as dual inhibitors for cholinesterases and Abeta aggregation. Bioorg Med Chem Lett 23(2):440–443.  https://doi.org/10.1016/j.bmcl.2012.11.064CrossRefPubMedGoogle Scholar
  118. 118.
    Geldmacher DS (2004) Donepezil (Aricept®) for treatment of Alzheimer’s disease and other dementing conditions. Expert Rev Neurother 4(1):5–16CrossRefGoogle Scholar
  119. 119.
    Maggi N, Pasqualucci CR, Ballotta R, Sensi P (1966) Rifampicin: a new orally active rifamycin. Chemotherapy 11(5):285–292.  https://doi.org/10.1159/000220462CrossRefPubMedGoogle Scholar
  120. 120.
    Li RS, Wang XB, Hu XJ, Kong LY (2013) Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorg Med Chem Lett 23(9):2636–2641.  https://doi.org/10.1016/j.bmcl.2013.02.095CrossRefPubMedGoogle Scholar
  121. 121.
    Luo W, Su YB, Hong C, Tian RG, Su LP, Wang YQ, Li Y, Yue JJ, Wang CJ (2013) Design, synthesis and evaluation of novel 4-dimethylamine flavonoid derivatives as potential multi-functional anti-Alzheimer agents. Bioorg Med Chem 21(23):7275–7282.  https://doi.org/10.1016/j.bmc.2013.09.061CrossRefPubMedGoogle Scholar
  122. 122.
    Birks J, Grimley Evans J, Iakovidou V, Tsolaki M, Holt F (2000) Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev (4):CD001191Google Scholar
  123. 123.
    Xie SS, Wang XB, Li JY, Yang L, Kong LY (2013) Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease. Eur J Med Chem 64:540–553.  https://doi.org/10.1016/j.ejmech.2013.03.051CrossRefPubMedGoogle Scholar
  124. 124.
    Thiratmatrakul S, Yenjai C, Waiwut P, Vajragupta O, Reubroycharoen P, Tohda M, Boonyarat C (2014) Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 75:21–30.  https://doi.org/10.1016/j.ejmech.2014.01.020CrossRefPubMedGoogle Scholar
  125. 125.
    Colletier JP, Sanson B, Nachon F, Gabellieri E, Fattorusso C, Campiani G, Weik M (2006) Conformational flexibility in the peripheral site of Torpedo californica acetylcholinesterase revealed by the complex structure with a bifunctional inhibitor. J Am Chem Soc 128(14):4526–4527.  https://doi.org/10.1021/ja058683bCrossRefPubMedGoogle Scholar
  126. 126.
    Qiang X, Sang Z, Yuan W, Li Y, Liu Q, Bai P, Shi Y, Ang W, Tan Z, Deng Y (2014) Design, synthesis and evaluation of genistein-O-alkylbenzylamines as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 76:314–331.  https://doi.org/10.1016/j.ejmech.2014.02.045CrossRefGoogle Scholar
  127. 127.
    Pudlo M, Luzet V, Ismaili L, Tomassoli I, Iutzeler A, Refouvelet B (2014) Quinolone-benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer disease. Bioorg Med Chem 22(8):2496–2507.  https://doi.org/10.1016/j.bmc.2014.02.046CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55(22):10282–10286.  https://doi.org/10.1021/jm300871xCrossRefGoogle Scholar
  129. 129.
    Hong C, Luo W, Yao D, Su YB, Zhang X, Tian RG, Wang CJ (2014) Novel aromatic-polyamine conjugates as cholinesterase inhibitors with notable selectivity toward butyrylcholinesterase. Bioorg Med Chem 22(12):3213–3219.  https://doi.org/10.1016/j.bmc.2014.03.045CrossRefPubMedGoogle Scholar
  130. 130.
    Lan JS, Xie SS, Li SY, Pan LF, Wang XB, Kong LY (2014) Design, synthesis and evaluation of novel tacrine-(beta-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 22(21):6089–6104.  https://doi.org/10.1016/j.bmc.2014.08.035CrossRefGoogle Scholar
  131. 131.
    Li S-Y, Jiang N, Xie S-S, Wang KD, Wang X-B, Kong L-Y (2014) Design, synthesis and evaluation of novel tacrine–rhein hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Org Biomol Chem 12(5):801–814CrossRefGoogle Scholar
  132. 132.
    Stoddard SV, Hamann MT, Wadkins RM (2014) Insights and ideas garnered from marine metabolites for development of dual-function acetylcholinesterase and amyloid-beta aggregation inhibitors. Mar Drugs 12(4):2114–2131.  https://doi.org/10.3390/md12042114CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3 Å resolution. FEBS Lett 463(3):321–326.  https://doi.org/10.1016/s0014-5793(99)01637-3CrossRefGoogle Scholar
  134. 134.
    Bautista-Aguilera OM, Esteban G, Bolea I, Nikolic K, Agbaba D, Moraleda I, Iriepa I, Samadi A, Soriano E, Unzeta M, Marco-Contelles J (2014) Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil-indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. Eur J Med Chem 75:82–95.  https://doi.org/10.1016/j.ejmech.2013.12.028CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Bourne Y, Grassi J, Bougis PE, Marchot P (1999) Conformational flexibility of the acetylcholinesterase tetramer suggested by X-ray crystallography. J Biol Chem 274(43):30370–30376.  https://doi.org/10.1074/jbc.274.43.30370CrossRefGoogle Scholar
  136. 136.
    Ngamelue MN, Homma K, Lockridge O, Asojo OA (2007) Crystallization and X-ray structure of full-length recombinant human butyrylcholinesterase. Acta Crystallogr Sect F Struct Biol Cryst Commun 63(Pt 9):723–727.  https://doi.org/10.1107/S1744309107037335CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci U S A 105(15):5739–5744.  https://doi.org/10.1073/pnas.0710626105CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, Edmondson DE, Mattevi A (2007) Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 50(23):5848–5852.  https://doi.org/10.1021/jm070677yCrossRefPubMedGoogle Scholar
  139. 139.
    Bautista-Aguilera OM, Esteban G, Chioua M, Nikolic K, Agbaba D, Moraleda I, Iriepa I, Soriano E, Samadi A, Unzeta M, Marco-Contelles J (2014) Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids. Drug Des Devel Ther 8:1893–1910.  https://doi.org/10.2147/DDDT.S69258CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Goyal M, Dhanjal JK, Goyal S, Tyagi C, Hamid R, Grover A (2014) Development of dual inhibitors against Alzheimer’s disease using fragment-based QSAR and molecular docking. Biomed Res Int 2014:979606.  https://doi.org/10.1155/2014/979606CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Cheung J, Gary EN, Shiomi K, Rosenberry TL (2013) Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med Chem Lett 4(11):1091–1096.  https://doi.org/10.1021/ml400304wCrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Xie SS, Wang X, Jiang N, Yu W, Wang KD, Lan JS, Li ZR, Kong LY (2015) Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur J Med Chem 95:153–165.  https://doi.org/10.1016/j.ejmech.2015.03.040CrossRefGoogle Scholar
  143. 143.
    Xie SS, Lan JS, Wang XB, Jiang N, Dong G, Li ZR, Wang KD, Guo PP, Kong LY (2015) Multifunctional tacrine-trolox hybrids for the treatment of Alzheimer’s disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties. Eur J Med Chem 93:42–50.  https://doi.org/10.1016/j.ejmech.2015.01.058CrossRefPubMedGoogle Scholar
  144. 144.
    Luo XT, Wang CM, Liu Y, Huang ZG (2015) New multifunctional melatonin-derived benzylpyridinium bromides with potent cholinergic, antioxidant, and neuroprotective properties as innovative drugs for Alzheimer’s disease. Eur J Med Chem 103:302–311.  https://doi.org/10.1016/j.ejmech.2015.08.052CrossRefGoogle Scholar
  145. 145.
    Sang Z, Qiang X, Li Y, Yuan W, Liu Q, Shi Y, Ang W, Luo Y, Tan Z, Deng Y (2015) Design, synthesis and evaluation of scutellarein-O-alkylamines as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 94:348–366.  https://doi.org/10.1016/j.ejmech.2015.02.063CrossRefPubMedGoogle Scholar
  146. 146.
    Liu Q, Qiang X, Li Y, Sang Z, Tan Z, Deng Y (2015) Design, synthesis and evaluation of chromone-2-carboxamido-alkylbenzylamines as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 23(5):911–923.  https://doi.org/10.1016/j.bmc.2015.01.042CrossRefGoogle Scholar
  147. 147.
    Bajda M, Jonczyk J, Malawska B, Czarnecka K, Girek M, Olszewska P, Sikora J, Mikiciuk-Olasik E, Skibinski R, Gumieniczek A, Szymanski P (2015) Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 23(17):5610–5618.  https://doi.org/10.1016/j.bmc.2015.07.029CrossRefPubMedGoogle Scholar
  148. 148.
    Benchekroun M, Bartolini M, Egea J, Romero A, Soriano E, Pudlo M, Luzet V, Andrisano V, Jimeno ML, Lopez MG, Wehle S, Gharbi T, Refouvelet B, de Andres L, Herrera-Arozamena C, Monti B, Bolognesi ML, Rodriguez-Franco MI, Decker M, Marco-Contelles J, Ismaili L (2015) Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: a synthetic renewal in tacrine-ferulic acid hybrids. ChemMedChem 10(3):523–539.  https://doi.org/10.1002/cmdc.201402409CrossRefPubMedGoogle Scholar
  149. 149.
    Dominguez JL, Fernandez-Nieto F, Castro M, Catto M, Paleo MR, Porto S, Sardina FJ, Brea JM, Carotti A, Villaverde MC, Sussman F (2015) Computer-aided structure-based design of multitarget leads for Alzheimer’s disease. J Chem Inf Model 55(1):135–148.  https://doi.org/10.1021/ci500555gCrossRefPubMedGoogle Scholar
  150. 150.
    Hong L, Koelsch G, Lin X, Wu S, Terzyan S, Ghosh AK, Zhang XC, Tang J (2000) Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science 290(5489):150–153.  https://doi.org/10.1126/science.290.5489.150CrossRefPubMedGoogle Scholar
  151. 151.
    Wu MY, Esteban G, Brogi S, Shionoya M, Wang L, Campiani G, Unzeta M, Inokuchi T, Butini S, Marco-Contelles J (2016) Donepezil-like multifunctional agents: design, synthesis, molecular modeling and biological evaluation. Eur J Med Chem 121:864–879.  https://doi.org/10.1016/j.ejmech.2015.10.001CrossRefPubMedGoogle Scholar
  152. 152.
    Najafi Z, Saeedi M, Mahdavi M, Sabourian R, Khanavi M, Tehrani MB, Moghadam FH, Edraki N, Karimpor-Razkenari E, Sharifzadeh M, Foroumadi A, Shafiee A, Akbarzadeh T (2016) Design and synthesis of novel anti-Alzheimer’s agents: Acridine-chromenone and quinoline-chromenone hybrids. Bioorg Chem 67:84–94.  https://doi.org/10.1016/j.bioorg.2016.06.001CrossRefPubMedGoogle Scholar
  153. 153.
    Zhang C, Du QY, Chen LD, Wu WH, Liao SY, Yu LH, Liang XT (2016) Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer’s disease. Eur J Med Chem 116:200–209.  https://doi.org/10.1016/j.ejmech.2016.03.077CrossRefPubMedGoogle Scholar
  154. 154.
    Luo W, Wang T, Hong C, Yang YC, Chen Y, Cen J, Xie SQ, Wang CJ (2016) Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents. Eur J Med Chem 122:17–26.  https://doi.org/10.1016/j.ejmech.2016.06.022CrossRefPubMedGoogle Scholar
  155. 155.
    Luo W, Chen Y, Wang T, Hong C, Chang LP, Chang CC, Yang YC, Xie SQ, Wang CJ (2016) Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorg Med Chem 24(4):672–680.  https://doi.org/10.1016/j.bmc.2015.12.031CrossRefPubMedGoogle Scholar
  156. 156.
    Wang ZM, Cai P, Liu QH, Xu DQ, Yang XL, Wu JJ, Kong LY, Wang XB (2016) Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem 123:282–297.  https://doi.org/10.1016/j.ejmech.2016.07.052CrossRefPubMedGoogle Scholar
  157. 157.
    Knez D, Brus B, Coquelle N, Sosic I, Sink R, Brazzolotto X, Mravljak J, Colletier JP, Gobec S (2015) Structure-based development of nitroxoline derivatives as potential multifunctional anti-Alzheimer agents. Bioorg Med Chem 23(15):4442–4452.  https://doi.org/10.1016/j.bmc.2015.06.010CrossRefPubMedGoogle Scholar
  158. 158.
    Xie SS, Lan JS, Wang X, Wang ZM, Jiang N, Li F, Wu JJ, Wang J, Kong LY (2016) Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 24(7):1528–1539.  https://doi.org/10.1016/j.bmc.2016.02.023CrossRefPubMedGoogle Scholar
  159. 159.
    Koca M, Yerdelen KO, Anil B, Kasap Z, Sevindik H, Ozyurek I, Gunesacar G, Turkaydin K (2016) Design, synthesis and biological activity of 1H-indene-2-carboxamides as multi-targeted anti-Alzheimer agents. J Enzyme Inhib Med Chem 31(sup2):13–23CrossRefGoogle Scholar
  160. 160.
    Wang Y, Sun Y, Guo Y, Wang Z, Huang L, Li X (2016) Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer’s disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives. J Enzyme Inhib Med Chem 31(3):389–397.  https://doi.org/10.3109/14756366.2015.1024675CrossRefPubMedGoogle Scholar
  161. 161.
    Mohamed T, Rao PPN (2017) 2,4-Disubstituted quinazolines as amyloid-β aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: development and structure-activity relationship (SAR) studies. Eur J Med Chem 126:823–843.  https://doi.org/10.1016/j.ejmech.2016.12.005CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Panek D, Wieckowska A, Wichur T, Bajda M, Godyn J, Jonczyk J, Mika K, Janockova J, Soukup O, Knez D, Korabecny J, Gobec S, Malawska B (2017) Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur J Med Chem 125:676–695.  https://doi.org/10.1016/j.ejmech.2016.09.078CrossRefPubMedGoogle Scholar
  163. 163.
    Rueeger H, Lueoend R, Rogel O, Rondeau JM, Mobitz H, Machauer R, Jacobson L, Staufenbiel M, Desrayaud S, Neumann U (2012) Discovery of cyclic sulfone hydroxyethylamines as potent and selective beta-site APP-cleaving enzyme 1 (BACE1) inhibitors: structure-based design and in vivo reduction of amyloid beta-peptides. J Med Chem 55(7):3364–3386.  https://doi.org/10.1021/jm300069yCrossRefPubMedGoogle Scholar
  164. 164.
    Najafi Z, Mahdavi M, Saeedi M, Karimpour-Razkenari E, Asatouri R, Vafadarnejad F, Moghadam FH, Khanavi M, Sharifzadeh M, Akbarzadeh T (2017) Novel tacrine-1,2,3-triazole hybrids: in vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 125:1200–1212.  https://doi.org/10.1016/j.ejmech.2016.11.008CrossRefPubMedGoogle Scholar
  165. 165.
    Sang Z, Qiang X, Li Y, Xu R, Cao Z, Song Q, Wang T, Zhang X, Liu H, Tan Z, Deng Y (2017) Design, synthesis and evaluation of scutellarein-O-acetamidoalkylbenzylamines as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 135:307–323.  https://doi.org/10.1016/j.ejmech.2017.04.054CrossRefPubMedGoogle Scholar
  166. 166.
    Jameel E, Meena P, Maqbool M, Kumar J, Ahmed W, Mumtazuddin S, Tiwari M, Hoda N, Jayaram B (2017) Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur J Med Chem 136:36–51.  https://doi.org/10.1016/j.ejmech.2017.04.064CrossRefPubMedGoogle Scholar
  167. 167.
    Sang Z, Pan W, Wang K, Ma Q, Yu L, Liu W (2017) Design, synthesis and biological evaluation of 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. Bioorg Med Chem 25(12):3006–3017.  https://doi.org/10.1016/j.bmc.2017.03.070CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sotirios Katsamakas
    • 1
  • Dimitra Hadjipavlou-Litina
    • 1
  1. 1.Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health SciencesAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations