Advertisement

Computational Studies on Natural Products for the Development of Multi-target Drugs

  • Veronika Temml
  • Daniela Schuster
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Secondary plant metabolites represent “privileged structures” in drug development; they frequently interact with multiple protein targets within the body. For example, the anti-inflammatory natural product resveratrol from red wine has been shown to be active on over ten targets. Computational methods allow us to tackle the complexity of plant extracts, which often contain multiple active structures, which are in turn interacting with multiple targets. Virtual screening-based target fishing with pharmacophore modeling can help to identify protein targets, and docking simulations can be employed to propose a binding mechanism. Computational methods also play an important role in the analysis of plant extracts. Dereplication databases can be used to compare mass spectra of new extracts to a database of literature data to identify already known natural products. Activity networks of plant constituents help to understand the effect of extracts on specific pathologies and help to determine the active principles. We provide an overview, over the currently used computational methods in natural product research.

Keywords

Activity networks Dereplication Molecular docking Multi-target inhibitors Natural products Pharmacophore modeling Polypharmacology Virtual screening 

References

  1. 1.
    Reddy A, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Phar 6(1).  https://doi.org/10.1586/ecp.12.74CrossRefGoogle Scholar
  2. 2.
    Vane J (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232.  https://doi.org/10.1038/newbio231232a0CrossRefGoogle Scholar
  3. 3.
    Urmi D, Vincenzo C, Roland P et al (2007) A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20 alpha-hydroxysteroid dehydrogenase. Med Chem 3(6):546–550.  https://doi.org/10.2174/157340607782360399CrossRefGoogle Scholar
  4. 4.
    Din F, Valanciute A, Houde V et al (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142(7):1504–1515.e1503.  https://doi.org/10.1053/j.gastro.2012.02.050CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Talbodec A, Berkane N, Blandin V et al (2000) Aspirin and sodium salicylate inhibit endothelin ETA receptors by an allosteric type of mechanism. Mol Pharmacol 57(4):797–804.  https://doi.org/10.1124/mol.57.4.797CrossRefPubMedGoogle Scholar
  6. 6.
    Jeong W, Doroshow J, Kummar S et al (2013) US FDA approved oral kinase inhibitors for the treatment of malignancies. Curr Probl Cancer 37(3):110–144.  https://doi.org/10.1016/j.currproblcancer.2013.06.001CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Koch M, Waldmann H (2005) Natural product-derived compound libraries and protein structure similarity as guiding principles for the discovery of drug candidates. In: Kubinyi H (ed) Chemogenomics in drug discovery. Wiley, New York.  https://doi.org/10.1002/3527603948.ch14CrossRefGoogle Scholar
  8. 8.
    Koch M, Schuffenhauer A, Scheck M et al (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci U S A 102(48):17272–17277.  https://doi.org/10.1073/pnas.0503647102CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kulkarni S, Cantó C (2015) The molecular targets of resveratrol. Biochim Biophys Acta 1852(6):1114–1123.  https://doi.org/10.1016/j.bbadis.2014.10.005CrossRefPubMedGoogle Scholar
  10. 10.
    Aggarwal B, Surh Y, Shishodia S (eds) (2013) The molecular targets and therapeutic uses of curcumin in health and disease. Springer, HeidelbergGoogle Scholar
  11. 11.
    Wang J, Zhang C, Chia W (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:10111.  https://doi.org/10.1038/ncomms10111CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pascolutti M, Quinn R (2014) Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov Today 19(3):215–221.  https://doi.org/10.1016/j.drudis.2013.10.013CrossRefPubMedGoogle Scholar
  13. 13.
    Hu Y, Bajorath J (2014) Monitoring drug promiscuity over time. F1000Res 3:218.  https://doi.org/10.12688/f1000research.5250.2CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Méndez-Lucio O, Naveja J, Vite-Caritino H et al (2016) F.D. One drug for multiple targets: a computational perspective. J Mex Chem Soc 60:168–181Google Scholar
  15. 15.
    Weller M (2012) A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors (Basel) 12(7):9181CrossRefGoogle Scholar
  16. 16.
    Jacoby E (2011) Computational chemogenomics. Wires Comput Mol Sci 1(1):57–67.  https://doi.org/10.1002/wcms.11CrossRefGoogle Scholar
  17. 17.
    Oettl S, Hubert J, Nuzillard J et al (2014) Dereplication of depsides from the lichen pseudevernia furfuracea by centrifugal partition chromatography combined to 13C nuclear magnetic resonance pattern recognition. Anal Chim Acta 846:60–67.  https://doi.org/10.1016/j.aca.2014.07.009CrossRefPubMedGoogle Scholar
  18. 18.
    Allard P, Péresse T, Bisson J et al (2016) Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal Chem 88(6):3317–3323.  https://doi.org/10.1021/acs.analchem.5b04804CrossRefPubMedGoogle Scholar
  19. 19.
    Morphy R, Rankovic (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48(21):6523–6543.  https://doi.org/10.1021/jm058225dCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Steindl T, Schuster D, Laggner C et al (2006) Parallel screening: a novel concept in pharmacophore modeling and virtual screening. J Chem Inf Model 46(5):2146–2157.  https://doi.org/10.1021/ci6002043CrossRefPubMedGoogle Scholar
  21. 21.
    Steindl T, Schuster D, Wolber G et al (2006) High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening. J Comput Aided Mol Des 20(12):703–715.  https://doi.org/10.1007/s10822-006-9066-yCrossRefPubMedGoogle Scholar
  22. 22.
    Liu X, Ouyang S, Yu B et al (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38(2):609–614.  https://doi.org/10.1093/nar/gkq300CrossRefGoogle Scholar
  23. 23.
    Wang X, Shen Y, Wang S (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45:356–360.  https://doi.org/10.1093/nar/gkx374CrossRefGoogle Scholar
  24. 24.
    Rollinger J, Schuster D, Danzl B et al (2009) In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens. Planta Med 75(3):195–204.  https://doi.org/10.1055/s-0028-1088397CrossRefPubMedGoogle Scholar
  25. 25.
    Duwensee K, Schwaiger S, Tancevski I et al (2011) Leoligin, the major lignan from edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis 219(1):109–115.  https://doi.org/10.1016/j.atherosclerosis.2011.07.023CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Scharinger B, Messner B, Türkcan A et al (2016) Leoligin, the major lignan from edelweiss, inhibits 3-hydroxy-3-methyl-glutaryl-CoA reductase and reduces cholesterol levels in ApoE−/− mice. J Mol Cell Cardiol 99:35–46.  https://doi.org/10.1016/j.yjmcc.2016.08.003CrossRefPubMedGoogle Scholar
  27. 27.
    Kratz J, Mair C, Oettl S et al (2016) hERG channel blocking ipecac alkaloids identified by combined in silico – in vitro screening. Planta Med 82(11):1009–1015.  https://doi.org/10.1055/s-0042-105572CrossRefPubMedGoogle Scholar
  28. 28.
    Schaible A, Traber H, Temml V et al (2013) Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin. Biochem Pharmacol 86(4):476–486.  https://doi.org/10.1016/j.bcp.2013.04.015CrossRefPubMedGoogle Scholar
  29. 29.
    Reker D, Perna A, Rodrigues T et al (2014) Revealing the macromolecular targets of complex natural products. Nat Chem 6:1072.  https://doi.org/10.1038/nchem.2095CrossRefPubMedGoogle Scholar
  30. 30.
    Alsabil K, Suor-Cherer S, Koeberle A et al (2016) Semisynthetic and natural garcinoic acid isoforms as new mPGES-1 inhibitors. Planta Med 82(11):1110–1116.  https://doi.org/10.1055/s-0042-108739CrossRefPubMedGoogle Scholar
  31. 31.
    Pein H, Helesbeux J-J, Garscha U et al (2018) Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun (in revision)Google Scholar
  32. 32.
    Park H, Lee S, Hong S (2016) Discovery of dual inhibitors for wild type and D816V mutant of c-KIT kinase through virtual and biochemical screening of natural products. J Nat Prod 79(2):293–299.  https://doi.org/10.1021/acs.jnatprod.5b00851CrossRefPubMedGoogle Scholar
  33. 33.
    Quoc-Tuan D, Isabelle R, Patrice A et al (2005) Reverse pharmacognosy: application of selnergy, a new tool for lead discovery. The example of epsilon viniferin. Curr Drug Discov Technol 2(3):161–167.  https://doi.org/10.2174/1570163054866873CrossRefGoogle Scholar
  34. 34.
    Do Q-T, Lamy C, Renimel I et al (2007) Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin. Planta Med 73(12):1235–1240.  https://doi.org/10.1055/s-2007-990216CrossRefPubMedGoogle Scholar
  35. 35.
    Ntie-Kang F, Simoben C, Karaman B et al (2016) Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants. Drug Des Devel Ther 10:2137–2154.  https://doi.org/10.2147/DDDT.S108118CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang Y, Yang L, Hou J et al (2018) Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. J Biomol Struct Dyn:1–59.  https://doi.org/10.1080/07391102.2018.1434833
  37. 37.
    Gfeller D, Grosdidier A, Wirth M et al (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(1):32–38.  https://doi.org/10.1093/nar/gku293CrossRefGoogle Scholar
  38. 38.
    Reker D, Rodrigues T, Schneider P et al (2014) Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 111(11):4067–4072.  https://doi.org/10.1073/pnas.1320001111CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Reutlinger M, Koch C, Reker D et al (2013) Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for ‘orphan’ molecules. Mol Inform 32(2):133–138.  https://doi.org/10.1002/minf.201200141CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Reker D, Seet M, Pillong M et al (2014) Deorphaning pyrrolopyrazines as potent multi-target antimalarial agents. Angew Chem Int Ed Engl 53(27):7079–7084.  https://doi.org/10.1002/anie.201311162CrossRefPubMedGoogle Scholar
  41. 41.
    Schneider P, Schneider G (2017) De-orphaning the marine natural product (±)-marinopyrrole A by computational target prediction and biochemical validation. Chem Commun 53:2272–2274.  https://doi.org/10.1039/C6CC09693JCrossRefGoogle Scholar
  42. 42.
    Lagunin A, Stepanchikova A, Filimonov D et al (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16(8):747–748.  https://doi.org/10.1093/bioinformatics/16.8.747CrossRefPubMedGoogle Scholar
  43. 43.
    Lagunin A, Filipov D, Poroikov V (2010) Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des 16(15):1703–1717.  https://doi.org/10.2174/138161210791164063CrossRefPubMedGoogle Scholar
  44. 44.
    Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related function among proteins independent of sequence and fold homology. J Mol Biol 323(2):387–406.  https://doi.org/10.1016/S0022-2836(02)00811-2CrossRefGoogle Scholar
  45. 45.
    Shulman-Peleg A, Nussinov R, Wolfson H (2005) SiteEngines: recognition and comparison of binding sites and protein–protein interfaces. Nucleic Acids Res 33(2):337–341.  https://doi.org/10.1093/nar/gki482CrossRefGoogle Scholar
  46. 46.
    von Behren M, Volkamer A, Henzler A et al (2013) Fast protein binding site comparison via an index-based screening technology. J Chem Inf Model 53(2):411–422.  https://doi.org/10.1021/ci300469hCrossRefGoogle Scholar
  47. 47.
    Baroni M, Cruciani G, Sciabola S et al (2007) A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): theory and application. J Chem Inf Model 47(2):279–294.  https://doi.org/10.1021/ci600253eCrossRefPubMedGoogle Scholar
  48. 48.
    Weill N, Rognan D (2010) Alignment-free ultra-high-throughput comparison of druggable protein−ligand binding sites. J Chem Inf Model 50(1):123–135.  https://doi.org/10.1021/ci900349yCrossRefPubMedGoogle Scholar
  49. 49.
    Ehrt C, Brinkjost T, Koch O (2016) Impact of binding site comparisons on medicinal chemistry and rational molecular design. J Med Chem 59(9):4121–4151.  https://doi.org/10.1021/acs.jmedchem.6b00078CrossRefPubMedGoogle Scholar
  50. 50.
    Dekker F, Koch M, Waldmann H (2005) Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics. Curr Opin Chem Biol 9(3):232–239.  https://doi.org/10.1016/j.cbpa.2005.03.003CrossRefPubMedGoogle Scholar
  51. 51.
    Koch M, Wittenberg L-O, Basu S et al (2004) Compound library development guided by protein structure similarity clustering and natural product structure. Proc Natl Acad Sci U S A 101(48):16721–16726.  https://doi.org/10.1073/pnas.0404719101CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vicini P, van der Graaf P (2013) Systems pharmacology for drug discovery and development: paradigm shift or flash in the pan? Clin Pharmacol Ther 93(5):379–381.  https://doi.org/10.1038/clpt.2013.40CrossRefPubMedGoogle Scholar
  53. 53.
    Lamb J, Crawford E, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935.  https://doi.org/10.1126/science.1132939CrossRefGoogle Scholar
  54. 54.
    Tiedemann R, Schmidt J, Keats J et al (2009) Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-κB with antimyeloma activity in vitro and in vivo. Blood 113(17):4027–4037.  https://doi.org/10.1182/blood-2008-09-179796CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Banerjee S, Li Y, Wang Z et al (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242.  https://doi.org/10.1016/j.canlet.2008.03.052CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Carrella D, Napolitano F, Rispoli R et al (2014) Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics 30(12):1787–1788.  https://doi.org/10.1093/bioinformatics/btu058CrossRefPubMedGoogle Scholar
  57. 57.
    Kibble M, Saarinen N, Tang J et al (2015) Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep 32(8):1249–1266.  https://doi.org/10.1039/C5NP00005JCrossRefPubMedGoogle Scholar
  58. 58.
    Hubert J, Nuzillard J-M, Renault J-H (2017) Dereplication strategies in natural product research: how many tools and methodologies behind the same concept? Phytochem Rev 16(1):55–95.  https://doi.org/10.1007/s11101-015-9448-7CrossRefGoogle Scholar
  59. 59.
    Kurita K, Glassey E, Linington R (2015) Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc Natl Acad Sci U S A 112(39):11999–12004.  https://doi.org/10.1073/pnas.1507743112CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Olivon F, Allard P-M, Koval A et al (2017) Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem Biol 12(10):2644–2651.  https://doi.org/10.1021/acschembio.7b00413CrossRefPubMedGoogle Scholar
  61. 61.
    Bento A, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(1):1083–1090.  https://doi.org/10.1093/nar/gkt1031CrossRefGoogle Scholar
  62. 62.
    Feher M, Schmidt J (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43(1):218–227.  https://doi.org/10.1021/ci0200467CrossRefPubMedGoogle Scholar
  63. 63.
    Rosén J, Gottfries J, Muresan S et al (2009) Novel chemical space exploration via natural products. J Med Chem 52(7):1953–1962.  https://doi.org/10.1021/jm801514wCrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lipinski C, Lombardo F, Dominy B et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development. Adv Drug Deliv Rev 46(1):3–26.  https://doi.org/10.1016/S0169-409X(00)00129-0CrossRefGoogle Scholar
  65. 65.
    Baell J, Holloway G (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740.  https://doi.org/10.1021/jm901137jCrossRefPubMedGoogle Scholar
  66. 66.
    Baell J (2016) Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 79(3):616–628.  https://doi.org/10.1021/acs.jnatprod.5b00947CrossRefPubMedGoogle Scholar
  67. 67.
    Jasial S, Hu Y, Bajorath J (2017) How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. J Med Chem 60(9):3879–3886.  https://doi.org/10.1021/acs.jmedchem.7b00154CrossRefPubMedGoogle Scholar
  68. 68.
    Bisson J, McAlpine J, Friesen J et al (2016) Can invalid bioactives undermine natural product-based drug discovery? J Med Chem 59(5):1671–1690.  https://doi.org/10.1021/acs.jmedchem.5b01009CrossRefPubMedGoogle Scholar
  69. 69.
    Rodrigues T, Reker D, Schneider P et al (2016) Counting on natural products for drug design. Nat Chem 8:531.  https://doi.org/10.1038/nchem.2479CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
  3. 3.Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyParacelsus Medical University SalzburgSalzburgAustria

Personalised recommendations