Effects of Chemicals on Mammary Gland Development

  • Adam J. FilgoEmail author
  • Ali S. Faqi
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The mammary gland is exceptionally a complex tissue. It is a sexually dimorphic organ in function, size, response to hormone signaling, and cellular structure. Unlike most organs, the mammary gland has several critical periods of growth and development after birth, and is only fully developed after a full-term pregnancy. Mammary gland development is dependent on complex endocrine signaling as well as paracrine and autocrine signaling between the stroma and parenchyma cells. Even outside of the critical windows of growth and development, the mammary gland is constantly changing with normal hormone fluctuations, most notably during the estrous/menstrual cycle. It is particularly sensitive to endocrine disrupting chemicals (EDCs). An EDC can affect both females and males, resulting in abnormal mammary gland development in adolescents. Later in life, EDCs can influence cancer outcomes. In adult females, alterations in mammary gland development can result in lactational impairment. This chapter describes the stages of development, the key hormone actions, and common EDCs and their effects on the mammary gland.


Endocrine disrupting chemicals Gestational development Hormones Involution Lactation Mammary gland Pregnancy Puberty 


  1. 1.
    Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA (1998) A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 95(9):5076–5081PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hens JR, Wysolmerski JJ (2005) Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 7(5):220–224PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Maller O, Martinson H, Schedin P (2010) Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 15(3):301–318PubMedCrossRefGoogle Scholar
  4. 4.
    Brisken C, O’Malley B (2010) Hormone action in the mammary gland. Cold Spring Harb Perspect Biol 2(12):a003178PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hennighausen L, Robinson GW (2001) Signaling pathways in mammary gland development. Dev Cell 1(4):467–475PubMedCrossRefGoogle Scholar
  6. 6.
    Hovey RC, Trott JF, Vonderhaar BK (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 7(1):17–38PubMedCrossRefGoogle Scholar
  7. 7.
    Howard BA, Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5(2):119–137PubMedCrossRefGoogle Scholar
  8. 8.
    Rudel RA, Fenton SE, Ackerman JM, Euling SY, Makris SL (2011) Environmental exposures and mammary gland development: state of the science, public health implications, and research recommendations. Environ Health Perspect 119(8):1053–1061PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) (2016) SEER cancer statistics review, 1975–2013. National Cancer Institute, Bethesda, MD. (based on November 2015 SEER data submission)Google Scholar
  10. 10.
    American Cancer Society (ACS) (2016) Cancer facts and figures 2016. American Cancer Society, AtlantaGoogle Scholar
  11. 11.
    American Cancer Society (ACS) (2015) Breast cancer facts and figures 2015–2016. American Cancer Society, Inc., AtlantaGoogle Scholar
  12. 12.
  13. 13.
    Macon MB, Fenton SE (2013) Endocrine disruptors and the breast: early life effects and later life disease. J Mammary Gland Biol Neoplasia 18(1):43–61PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Forman MR, Winn DM, Collman GW, Rizzo J, Birnbaum LS (2015) Environmental exposures, breast development and cancer risk: through the looking glass of breast cancer prevention. Reprod Toxicol 54:6–10PubMedCrossRefGoogle Scholar
  15. 15.
    Drife JO (1986) Breast development in puberty. Ann N Y Acad Sci 464(1 Endocrinology):58–65PubMedCrossRefGoogle Scholar
  16. 16.
    Russo J, Russo IH (2004) Development of the human breast. Maturitas 49(1):2–15PubMedCrossRefGoogle Scholar
  17. 17.
    Jolicoeur F (2005) Intrauterine breast development and the mammary myoepithelial lineage. J Mammary Gland Biol Neoplasia 10(3):199–210PubMedCrossRefGoogle Scholar
  18. 18.
    Robinson GW, Karpf ABC, Kratochwil K (1999) Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 4(1):9–19PubMedCrossRefGoogle Scholar
  19. 19.
    Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1(4):533PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gusterson BA, Stein T (2012) Human breast development. Semin Cell Dev Biol 23(5):567PubMedCrossRefGoogle Scholar
  21. 21.
    Hassiotou F, Geddes D (2013) Anatomy of the human mammary gland: current status of knowledge. Clin Anat 26(1):29–48PubMedCrossRefGoogle Scholar
  22. 22.
    Javed A, Lteif A (2013) Development of the human breast. Semin Plast Surg 27(1):005–012CrossRefGoogle Scholar
  23. 23.
    Alexander JM, Campbell MJ (1997) Prevalence of inverted and non-protractile nipples in antenatal women who intend to breast-feed. Breast 6(2):72–78CrossRefGoogle Scholar
  24. 24.
    Montagna W, Yun JS (1972) The glands of montgomery. Br J Dermatol 86(2):126–133PubMedCrossRefGoogle Scholar
  25. 25.
    Anbazhagan R, Bartek J, Monaghan P, Gusterson BA (1991) Growth and development of the human infant breast. Am J Anat 192(4):407–417PubMedCrossRefGoogle Scholar
  26. 26.
    Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44(235):291–303PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Neville MC, McFadden TB, Forsyth I (2002) Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 7(1):49–66PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson E, Clarke RB (2004) Steroid receptors and cell cycle in normal mammary epithelium. J Mammary Gland Biol Neoplasia 9(1):3–13PubMedCrossRefGoogle Scholar
  29. 29.
    Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23(22):2563–2577PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Russo J, Lynch H, Russo IH (2001) Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast J 7(5):278–291PubMedCrossRefGoogle Scholar
  31. 31.
    Beesley R, Johnson J (2008) Glob. libr. women’s medGoogle Scholar
  32. 32.
    Davis B, Fenton S (2013) Mammary gland. In: Haschek WM, Rousseaux CG, Wallig MA (eds) Haschek and Rousseaux’s handbook of toxicologic pathology, vol 3. Elsevier Academic Press, New York, NY, pp 2665–2694CrossRefGoogle Scholar
  33. 33.
    Lamote I, Meyer E, Massart-Leën AM, Burvenich C (2004) Sex steroids and growth factors in the regulation of mammary gland proliferation, differentiation, and involution, vol 69. Elsevier Inc., United StatesGoogle Scholar
  34. 34.
    Taylor D, Pearce CL, Hovanessian-Larsen L, Downey S, Spicer DV, Bartow S et al (2009) Progesterone and estrogen receptors in pregnant and premenopausal non-pregnant normal human breast. Breast Cancer Res Treat 118(1):161–168PubMedCrossRefGoogle Scholar
  35. 35.
    Russo J, Russo IH (2014) Techniques and methodological approaches in breast cancer research, vol 1. Springer, New York, NYCrossRefGoogle Scholar
  36. 36.
    Cowin P, Wysolmerski J (2010) Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol 2(6):a003251–a003251PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Robinson GW, Hennighausen L (1997) Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymal-epithelial interactions. Development 124(14):2701PubMedGoogle Scholar
  38. 38.
    Hatsell S, Rowlands T, Hiremath M, Cowin P (2003) β-catenin and tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia 8(2):145–158PubMedCrossRefGoogle Scholar
  39. 39.
    Lindvall C, Bu W, Williams BO, Li Y (2007) Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev 3(2):157–168PubMedCrossRefGoogle Scholar
  40. 40.
    Osin PP, Anbazhagan R, Bartkova J, Nathan B, Gusterson BA (1998) Breast development gives insights into breast disease. Histopathology 33(3):275–283PubMedCrossRefGoogle Scholar
  41. 41.
    Gallego MI, Binart N, Robinson GW, Okagaki R, Coschigano KT, Perry J, Kopchick JJ, Oka T, Kelly PA, Hennighausen L (2001) Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev Biol 229(1):163–175PubMedCrossRefGoogle Scholar
  42. 42.
    Feldman M, Ruan W, Tappin I, Wieczorek R, Kleinberg D (1999) The effect of GH on estrogen receptor expression in the rat mammary gland. J Endocrinol 163(3):515–522PubMedCrossRefGoogle Scholar
  43. 43.
    Ciarloni L, Mallepell S, Brisken C (2007) Amphiregulin is an essential mediator of estrogen receptor α function in mammary gland development. Proc Natl Acad Sci U S A 104(13):5455–5460PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    McBryan J, Howlin J, Napoletano S, Martin F (2008) Amphiregulin: role in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 13(2):159–169PubMedCrossRefGoogle Scholar
  45. 45.
    Obr AE, Edwards DP (2012) The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 357(1–2):4–17PubMedCrossRefGoogle Scholar
  46. 46.
    Aupperlee MD, Leipprandt JR, Bennett JM, Schwartz RC, Haslam SZ (2013) Amphiregulin mediates progesterone-induced mammary ductal development during puberty. Breast Cancer Res 15(3):R44PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D, Choi Y et al (2010) Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci U S A 107(7):2989–2994PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Forsyth IA, Wallis M (2002) Growth hormone and prolactin – molecular and functional evolution. J Mammary Gland Biol Neoplasia 7(3):291–312PubMedCrossRefGoogle Scholar
  49. 49.
    Monks J (2007) TGFβ as a potential mediator of progesterone action in the mammary gland of pregnancy. J Mammary Gland Biol Neoplasia 12(4):249–257PubMedCrossRefGoogle Scholar
  50. 50.
    Navarrete MAH, Maier CM, Falzoni R, de Azevedo Quadros LG, Lima GR, Baracat EC, Nazário ACP (2005) Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle. Breast Cancer Res 7(3):R306–R313PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ (2008) Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 13(1):13–28PubMedCrossRefGoogle Scholar
  52. 52.
    Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, Blazek KD, Kazlauskas M, Hilton HN, Wittlin S, Alexander WS, Lindeman GJ, Visvader JE, Ormandy CJ (2006) Socs2 and Elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 20(5):1177–1187PubMedCrossRefGoogle Scholar
  53. 53.
    Knight CH, Peaker M, Wilde CJ (1998) Local control of mammary development and function. Rev Reprod 3(2):104–112. doi: 10.1530/revreprod/3.2.104 PubMedCrossRefGoogle Scholar
  54. 54.
    Allan GJ, Beattie J, Flint DJ (2004) The role of IGFBP-5 in mammary gland development and involution. Domest Anim Endocrinol 27(3):257–266PubMedCrossRefGoogle Scholar
  55. 55.
    Baxter FO, Neoh K, Tevendale MC (2007) The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia 12(1):3–13PubMedCrossRefGoogle Scholar
  56. 56.
    Sutherland KD, Lindeman GJ, Visvader JE (2007) The molecular culprits underlying precocious mammary gland involution. J Mammary Gland Biol Neoplasia 12(1):15–23PubMedCrossRefGoogle Scholar
  57. 57.
    Barash I (2006) Stat5 in the mammary gland: controlling normal development and cancer. J Cell Physiol 209(2):305–313PubMedCrossRefGoogle Scholar
  58. 58.
    Watson C (2006) Key stages in mammary gland development – involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res 8(2):203PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Furth PA (1999) Mammary gland involution and apoptosis of mammary epithelial cells. J Mammary Gland Biol Neoplasia 4(2):123–127PubMedCrossRefGoogle Scholar
  60. 60.
    Zinser GM, Welsh J (2004) Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol Endocrinol 18(9):2208–2223PubMedCrossRefGoogle Scholar
  61. 61.
    Tonner E, Allan G, Flint D (2000) Hormonal control of plasmin and tissue-type plasminogen activator activity in rat milk during involution of the mammary gland. J Endocrinol 167(2):265–273PubMedCrossRefGoogle Scholar
  62. 62.
    Hughes K, Wickenden JA, Allen JE, Watson CJ (2012) Conditional deletion of Stat3 in mammary epithelium impairs the acute phase response and modulates immune cell numbers during post-lactational regression. J Pathol 227(1):106–117PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mandrup KR, Hass U, Christiansen S, Boberg J (2012) Perinatal ethinyl oestradiol alters mammary gland development in male and female Wistar rats. Int J Androl 35(3):385–396PubMedCrossRefGoogle Scholar
  64. 64.
    de Assis S, Warri AM, Cruz I, Laja O, Tian Y, Zhang B, Wang Y, Huang TH, Hilakivi-Clarke L (2012) High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun 3:1053PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wingo PA, Lee NC, Ory HW, Beral V, Peterson HB, Rhodes P (1993) Age-specific differences in the relationship between oral contraceptive use and breast cancer. Cancer 71(S4):1506–1517PubMedCrossRefGoogle Scholar
  66. 66.
    Hilakivi-Clarke L, Wärri A, Bouker KB, Zhang X, Cook KL, Jin L, Zwart A, Nguyen N, Hu R, Cruz MI, de Assis S, Wang X, Xuan J, Wang Y, Wehrenberg B, Clarke R (2017) Effects of in utero exposure to ethinyl estradiol on tamoxifen resistance and breast cancer recurrence in a preclinical model. J Natl Cancer Inst 109(1.) p.djw188Google Scholar
  67. 67.
    American Cancer Society (ACS) (2015) Menopausal hormone therapy and cancer risk. American Cancer Society, Inc., AtlantaGoogle Scholar
  68. 68.
    NTP National Toxicology Program (2011) Diethylstilbestrol. 12th Report on Carcinogens 12:159–161Google Scholar
  69. 69.
    IARC (2012) Diethylstilbestrol. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 100A:175–218Google Scholar
  70. 70.
    Reed CE, Fenton SE (2013) Exposure to diethylstilbestrol during sensitive life stages: a legacy of heritable health effects. Birth Defects Res C Embryo Today 99(2):134PubMedCrossRefGoogle Scholar
  71. 71.
    Palmer JR, Wise LA, Hatch EE, Troisi R, Titus-Ernstoff L, Strohsnitter W, Kaufman R, Herbst AL, Noller KL, Hyer M, Hoover RN (2006) Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15(8):1509–1514PubMedCrossRefGoogle Scholar
  72. 72.
    Hovey RC, Asai-Sato M, Warri A, Terry-Koroma B, Colyn N, Ginsburg E, Vonderhaar BK (2005) Effects of neonatal exposure to diethylstilbestrol, tamoxifen, and toremifene on the BALB/c mouse mammary gland. Biol Reprod 72(2):423–435PubMedCrossRefGoogle Scholar
  73. 73.
    NTP National Toxicology Program (2008) Toxicology and carcinogenesis studies of genistein (cas no. 446-72-0) in Sprague-Dawley rats (feed study). National Toxicology Program Technical Report Series, vol (545), p 1Google Scholar
  74. 74.
    Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA, Stallings VA, Drulis JM, Nelson SE, Hanson SA (2001) Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA 286(7):807–814PubMedCrossRefGoogle Scholar
  75. 75.
    Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr 6(4):408PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lamartiniere CA, Zhang JX, Cotroneo MS (1998) Genistein studies in rats: potential for breast cancer prevention and reproductive and developmental toxicity. American Society for Clinical Nutrition, Inc., United StatesGoogle Scholar
  77. 77.
    Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Skaar T, Russo I, Clarke R (1999) Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br J Cancer 80(11):1682–1688PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Delclos KB, Bucci TJ, Lomax LG, Latendresse JR, Warbritton A, Weis CC, Newbold RR (2001) Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats. Reprod Toxicol 15(6):647–663PubMedCrossRefGoogle Scholar
  79. 79.
    Cabanes A, Wang M, Olivo S, DeAssis S, Gustafsson J, Khan G, Hilakivi-Clarke L (2004) Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis 25(5):741–748PubMedCrossRefGoogle Scholar
  80. 80.
    Caëtano B, Le Corre L, Chalabi N, Delort L, Bignon Y, Bernard-Gallon DJ (2006) Soya phytonutrients act on a panel of genes implicated with BRCA1 and BRCA2 oncosuppressors in human breast cell lines. Br J Nutr 95(2):406PubMedCrossRefGoogle Scholar
  81. 81.
    Hilakivi-Clarke L, Cho E, Clarke R (1998) Maternal genistein exposure mimics the effects of estrogen on mammary gland development in female mouse offspring. Oncol Rep 5(3):609–616PubMedGoogle Scholar
  82. 82.
    Hilakivi-Clarke L, Cho E, Cabanes A, DeAssis S, Olivo S, Helferich W, Lippman MC, Clarke R (2002) Dietary modulation of pregnancy estrogen levels and breast cancer risk among female rat offspring. Clin Cancer Res 8(11):3601–3610PubMedGoogle Scholar
  83. 83.
    Foster WG, Younglai EV, Boutross-Tadross O, Hughes CL, Wade MG (2004) Mammary gland morphology in Sprague-Dawley rats following treatment with an organochlorine mixture in utero and neonatal genistein. Toxicol Sci 77(1):91–100PubMedCrossRefGoogle Scholar
  84. 84.
    Latendresse JR, Bucci TJ, Olson G, Mellick P, Weis CC, Thorn B, Newbold RR, Delclos KB (2009) Genistein and ethinyl estradiol dietary exposure in multigenerational and chronic studies induce similar proliferative lesions in mammary gland of male Sprague–Dawley rats. Reprod Toxicol 28(3):342–353PubMedCrossRefGoogle Scholar
  85. 85.
    vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA (2012) The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol 354(1–2):74–84PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Voelkel W, Colnot T, Csanady G, Filser J, Dekant W (2002) Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 15(10):1281–1287CrossRefGoogle Scholar
  87. 87.
    Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, Muñoz-de-Toro M (2007) Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect 115(1):80–86PubMedCrossRefGoogle Scholar
  88. 88.
    Markey CM, Luque EH, de Toro MM, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65(4):1215–1223PubMedCrossRefGoogle Scholar
  89. 89.
    Muñoz-de-Toro M, Markey CM, Wadia PR, Luque EH, Rubin BS, Sonnenschein C, Soto AM (2005) Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology 146(9):4138–4147PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM (2007) Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol 23(3):383–390PubMedCrossRefGoogle Scholar
  91. 91.
    Vandenberg LN, Maffini MV, Schaeberle CM, Ucci AA, Sonnenschein C, Rubin BS, Soto AM (2008) Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. Reprod Toxicol 26(3):210–219PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Shelby MD (2008) NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. NTP CERHR MON (22):v-vGoogle Scholar
  93. 93.
    Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM (2013) Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect 121(9):1040–1046PubMedPubMedCentralGoogle Scholar
  94. 94.
    Mandrup K, Boberg J, Isling LK, Christiansen S, Hass U (2016) Low-dose effects of bisphenol A on mammary gland development in rats. Andrology 4(4):673–683PubMedCrossRefGoogle Scholar
  95. 95.
    NTP National Toxicology Program (2008) NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. RTP, NC 27709Google Scholar
  96. 96.
    FDA (2016) Bisphenol A (BPA): use in food contact application.
  97. 97.
    EFSA. European Food Safety Authority (2015) Scientific opinion on bisphenol A (2015).
  98. 98.
    Vandenberg LN, Prins GS (2016) Clarity in the face of confusion: new studies tip the scales on bisphenol A(BPA). Andrology 4:561–564PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bhargava HN, Leonard PA (1996) Triclosan: applications and safety. Am J Infect Control 24:209–218PubMedCrossRefGoogle Scholar
  100. 100.
    Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ Sci Technol 39(6):1420–1426PubMedCrossRefGoogle Scholar
  101. 101.
    Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J (2006) Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health A 69:1861–1873PubMedCrossRefGoogle Scholar
  102. 102.
    Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–1489PubMedCrossRefGoogle Scholar
  103. 103.
    Calafat XY, Wong L, Reidy JA, Needham LL (2008) Urinary concentrations of triclosan in the U.S. population: 2003–2004 Antonia M. Environ Health Perspect 116(3):303–307PubMedCrossRefGoogle Scholar
  104. 104.
    Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372:87–93PubMedCrossRefGoogle Scholar
  105. 105.
    Crofton KM, Paul KB, Devito MJ, Hedge JM (2007) Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ Toxicol Pharmacol 24(2):194–197PubMedCrossRefGoogle Scholar
  106. 106.
    Gee RH, Charles A, Taylor N, Darbre PD (2008) Oestrogenic and androgenic activity of triclosan in breast cancer cells. J Appl Toxicol 28:78–91PubMedCrossRefGoogle Scholar
  107. 107.
    Stoker TE, Gibson EK, Zorrilla LM (2010) Triclosan exposure modulates estrogen-dependent responses in the female Wistar rat. Toxicol Sci 117(1):45–53PubMedCrossRefGoogle Scholar
  108. 108.
    Darbre PD, Charles AK (2010) Environmental oestrogens and breast cancer: evidence for combined involvement of dietary, household and cosmetic xenoestrogens. Anticancer Res 30(3):815PubMedGoogle Scholar
  109. 109.
    Dinwiddie MT, Terry PD, Chen J (2014) Recent evidence regarding triclosan and cancer risk. Int J Environ Res Public Health 11(2):2209–2209PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
  111. 111.
  112. 112.
    US EPA (2000) Reregistration eligibility decision (RED) vinclozolin. Office of Prevention, Pesticides and Toxic Substances. US Environmental Protection AgencyGoogle Scholar
  113. 113.
    Kelce WR, Monosson E, Gamcsik MP, Laws SC, Gray LEJ (1994) Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol 126:276–285PubMedCrossRefGoogle Scholar
  114. 114.
    Monosson E, Kelce WR, Lambright C, Ostby J, Gray LE Jr (1999) Peripubertal exposure to the antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of androgen-dependent tissues, and alters androgen receptor function in the male rat. Toxicol Ind Health 15:65–79PubMedCrossRefGoogle Scholar
  115. 115.
    Gray LE Jr, Ostby J, Furr J, Wolf CJ, Lambright C, Parks L, Veeramachaneni DN, Wilson V, Price M, Hotchkiss A, Orlando E, Guillette L (2001) Effects of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod 7:248–264CrossRefGoogle Scholar
  116. 116.
    Christiansen S, Scholze M, Dalgaard M, Vinggaard AM, Axelstad M, Kortenkamp A, Hass U (2009) Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environ Health Perspect 117:1839–1846PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yeh S, Hu YC, Wang P, Xie C, Xu Q, Tsai M, Dong Z, Wang R, Lee T, Chang C (2003) Abnormal mammary gland development and growth retardation in female mice and MCF7 breast cancer cells lacking androgen receptor. J Exp Med 198:1899–1908PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Irigaray P, Newby JA, Clapp R, Hardell L, Howard V, Montagnier L, Epstein S, Belpomme D (2007) Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed Pharmacother 61:640–658PubMedCrossRefGoogle Scholar
  119. 119.
    Guerrero-Bosagna C, Settles M, Lucker BJ, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 5:e13100PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469PubMedCrossRefGoogle Scholar
  121. 121.
    Anway MD, Leathers C, Skinner MK (2006) Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147(12):5515–5523PubMedCrossRefGoogle Scholar
  122. 122.
    El Sheikh Saad H, Meduri G, Phrakonkham P, Bergès R, Vacher S, Djallali M, Auger J, Canivenc-Lavier MC, Perrot-Applanat M (2011) Abnormal peripubertal development of the rat mammary gland following exposure in utero and during lactation to a mixture of genistein and the food contaminant vinclozolin. Reprod Toxicol 32(1):15–25PubMedCrossRefGoogle Scholar
  123. 123.
    El Sheikh Saad H, Toullec A, Vacher S, Pocard M, Bieche I, Perrot-Applanat M (2013) In utero and lactational exposure to vinclozolin and genistein induces genomic changes in the rat mammary gland. J Endocrinol 216(2):245–263PubMedCrossRefGoogle Scholar
  124. 124.
    Knower KC, To, S. Q, Leung YK, Ho SM, Clyne CD (2014) Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer 21:T33–T55PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Rudel RA, Ackerman JM, Attfield KR, Brody JG (2014) New exposure biomarkers as tools for breast cancer epidemiology, biomonitoring, and prevention: a systematic approach based on animal evidence. National Institute of Environmental Health Sciences, United StatesGoogle Scholar
  126. 126.
    Emond C, DeVito M, Warner M, Eskenazi B, Mocarelli P, Birnbaum LS (2016) An assessment of dioxin exposure across gestation and lactation using a PBPK model and new data from seveso. Environ Int 92–93:23–32PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bruner-Tran KL, Gnecco J, Ding T, Glore DR, Pensabene V, Osteen KG (2016) Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: translating lessons from murine models. Reprod Toxicol 68:59–71PubMedCrossRefGoogle Scholar
  128. 128.
    Safe SH (1995) Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther 67(2):247–281PubMedCrossRefGoogle Scholar
  129. 129.
    Rogers JM, Denison MS (2002) Analysis of the antiestrogenic activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in human ovarian carcinoma BG-1 cells. Mol Pharmacol 61(6):1393–1403PubMedCrossRefGoogle Scholar
  130. 130.
    Brown N, Manzolillo P, Zhang J, Wang J, Lamartiniere C (1998) Prenatal TCDD and predisposition to mammary cancer in the rat. Carcinogenesis 19(9):1623–1629PubMedCrossRefGoogle Scholar
  131. 131.
    Fenton S, Hamm J, Birnbaum L, Youngblood G (2002) Persistent abnormalities in the rat mammary gland following gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Sci 67(1):63–74PubMedCrossRefGoogle Scholar
  132. 132.
    Vorderstrasse BA, Fenton SE, Bohn AA, Cundiff JA, Lawrence B (2004) A novel effect of dioxin: exposure during pregnancy severely impairs mammary gland differentiation. Toxicol Sci 78(2):248–257PubMedCrossRefGoogle Scholar
  133. 133.
    Lew BJ, Collins LL, O’Reilly MA, Lawrence BP (2009) Activation of the aryl hydrocarbon receptor during different critical windows in pregnancy alters mammary epithelial cell proliferation and differentiation. Toxicol Sci 111(1):151–162PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Warner M, Mocarelli P, Samuels S, Needham L, Brambilla P, Eskenazi B (2011) Dioxin exposure and cancer risk in the seveso women’s health study. Environ Health Perspect 119(12):1700–1705PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Warner M, Eskenazi B, Mocarelli P, Gerthoux PM, Samuels S, Needham L, Patterson D, Brambilla P (2002) Serum dioxin concentrations and breast cancer risk in the seveso women’s health study. Environ Health Perspect 110(7):625–628PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Leijs MM, Koppe JG, Olie K, Aalderen WMC v, Voogt P d, Vulsma T, Westra M, ten Tusscher GW (2008) Delayed initiation of breast development in girls with higher prenatal dioxin exposure; a longitudinal cohort study. Chemosphere 73(6):999–1004PubMedCrossRefGoogle Scholar
  137. 137.
    Pup LD, Mantovani A, Cavaliere C, Facchini G, Luce A, Sperlongano P, Caraglia M, Berretta M (2016) Carcinogenetic mechanisms of endocrine disruptors in female cancers (review). Oncol Rep 36(2):603–612PubMedPubMedCentralGoogle Scholar
  138. 138.
    IARC (1993) Monographs on the Evaluation of the carcinogenic risk of chemicals to humans. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  139. 139.
    Garcia-Morales P, Saceda M, Kenney N, Kim N, Salomon DS, Gottardis MM, Solomon HB, Sholler PF, Jordan VC, Martin MB (1994) Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem 269(24):16896PubMedGoogle Scholar
  140. 140.
    Martin MB, Reiter R, Trock B, Paik S, Lirio AA, Kenney N, Stoica A, Foss C, Chepko G, Singh B, Hilakivi-Clarke L, Clarke R, Sholler PF, Johnson MD (2003) Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 9(8):1081–1084PubMedCrossRefGoogle Scholar
  141. 141.
    Davis J, Khan G, Martin MB, Hilakivi-Clarke L (2013) Effects of maternal dietary exposure to cadmium during pregnancy on mammary cancer risk among female offspring. J Carcinog 12(1):11–11PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Öhrvik H, Yoshioka M, Oskarsson A, Tallkvist J, Sveriges lantbruksuniversitet (2006) Cadmium-induced disturbances in lactating mammary glands of mice. Toxicol Lett 164(3):207–213PubMedCrossRefGoogle Scholar
  143. 143.
    Fenga C (2016) Occupational exposure and risk of breast cancer. Biomed Rep 4(3):282–292PubMedPubMedCentralGoogle Scholar
  144. 144.
    Lin J, Zhang F, Lei Y (2016) Dietary intake and urinary level of cadmium and breast cancer risk: a meta-analysis. Cancer Epidemiol 42:101–107PubMedCrossRefGoogle Scholar
  145. 145.
    Filgo AJ, Quist EM, Hoenerhoff MJ, Brix AE, Kissling GE, Fenton SE (2015) Perfluorooctanoic acid (PFOA)–induced liver lesions in two strains of mice following developmental exposures: PPARα is not required. Toxicol Pathol 43(4):558–568PubMedCrossRefGoogle Scholar
  146. 146.
    Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (2007) Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 115(9):1298–1305PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Lau C (2012) Perfluorinated compounds. Springer Basel, Basel, pp 47–86Google Scholar
  148. 148.
    Yang C, Tan YS, Harkema JR, Haslam SZ (2009) Differential effects of peripubertal exposure to perfluorooctanoic acid on mammary gland development in C57Bl/6 and Balb/c mouse strains. Reprod Toxicol 27(3):299–306PubMedCrossRefGoogle Scholar
  149. 149.
    Macon MB, Villanueva LR, Tatum-Gibbs K, Zehr RD, Strynar MJ, Stanko JP, White SS, Helfant L, Fenton SE (2011) Prenatal perfluorooctanoic acid exposure in CD-1 mice: low-dose developmental effects and internal dosimetry. Toxicol Sci 122(1):134–145PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    White SS, Stanko JP, Kato K, Calafat AM, Hines EP, Fenton SE (2011) Gestational and chronic low-dose PFOA exposures and mammary gland growth and differentiation in three generations of CD-1 mice. Environ Health Perspect 119(8):1070–1076PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Tucker DK, Macon MB, Strynar MJ, Dagnino S, Andersen E, Fenton SE (2015) The mammary gland is a sensitive pubertal target in CD-1 and C57Bl/6 mice following perinatal perfluorooctanoic acid (PFOA) exposure. Reprodu Toxicol 54:26–36CrossRefGoogle Scholar
  152. 152.
    Zhao Y, Tan YS, Haslam SZ, Yang C (2010) Perfluorooctanoic acid effects on steroid hormone and growth factor levels mediate stimulation of peripubertal mammary gland development in C57BL/6 mice. Toxicol Sci 115(1):214–224PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Krüger T, Ghisari M, Mulvad G, Kern P, Nzulumiki P, Dewailly E (2011) Perfluorinated compounds are related to breast cancer risk in greenlandic inuit: a case control study. Environ Health 10(1):88PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    US EPA (2016) Drinking water health advisory for perfluorooctanoic acid (PFOA). Office of Water. US Environmental Protection AgencyGoogle Scholar
  155. 155.
    IARC (2016) Monograph on the evaluation of carcinogenic risk to humans: some chemicals used as solvents and in polymer manufacture. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  156. 156.
    IARC (1999) Monograph on the evaluation of carcinogenic risk to humans: occupational exposure in insecticide application and some Pesticides. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  157. 157.
    Cooper RL, Laws SC, Das PC, Narotsky MG, Goldman JM, Tyrey EL, Stoker TE (2007) Atrazine and reproductive function: mode and mechanism of action studies. Birth Defects Res B Dev Reprod Toxicol 80(2):98–112PubMedCrossRefGoogle Scholar
  158. 158.
    Rayner JL, Wood C, Fenton SE (2004) Exposure parameters necessary for delayed puberty and mammary gland development in Long–Evans rats exposed in utero to atrazine. Toxicol Appl Pharmacol 195(1):23–34PubMedCrossRefGoogle Scholar
  159. 159.
    Rayner JL, Enoch RR, Fenton SE (2005) Adverse effects of prenatal exposure to atrazine during a critical period of mammary gland growth. Toxicol Sci 87(1):255–266PubMedCrossRefGoogle Scholar
  160. 160.
    Wetzel L, Luempert LI, Breckenridge C, Tisdel M, Stevens J, Thakur A, Extrom P, Eldridge J (1994) Chronic effects of atrazine on estrus and mammary tumor formation in female Sprague-Dawley and Fischer 344 rats. J Toxicol Environ Health 43(2):169–182PubMedCrossRefGoogle Scholar
  161. 161.
    Wirbisky SE, Freeman JL (2015) Atrazine exposure and reproductive dysfunction through the hypothalamus-pituitary-gonadal (HPG) axis. Toxics 3(4):414–450PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    US EPA (2003) Memorandum. Review of atrazine cancer epidemiology, DP Barcode D2950200, chemical #080803. Office of Prevention, Pesticides and Toxic Substances. US Environmental Protection AgencyGoogle Scholar
  163. 163.
    Rayner JL, Fenton SE (2011) Atrazine: an environmental endocrine disruptor that alters mammary gland development and tumor susceptibility. Springer New York, New York, NY, pp 167–183Google Scholar
  164. 164.
    Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122(3):135–140PubMedCrossRefGoogle Scholar
  165. 165.
    NTP (National Toxicology Program) (2016) Report on carcinogens, 14th edn. U.S. Department of Health and Human Services, Public Health Service, Research Triangle Park, NC. Google Scholar
  166. 166.
    Nguyen D, Oketch-Rabah H, Illa-Bochaca I, Geyer F, Reis-Filho J, Mao J, Ravani S, Zavadil J, Borowsky A, Jerry D, Dunphy K, Seo J, Haslam S, Medina D, Barcellos-Hoff M (2011) Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 19(5):640–651PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Osborne G, Rudel R, Schwarzman M (2015) Evaluating chemical effects on mammary gland development: a critical need in disease prevention. Reprod Toxicol 54:148–155PubMedCrossRefGoogle Scholar
  168. 168.
    Vandenberg LN, Schaeberleb CM, Rubinb BS, Sonnenscheinb C, Soto AM (2013) The male mammary gland: a target for the xenoestrogen bisphenol A. Reprod Toxicol 37:15–23PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Diamanti-Kandarakis E, Jean-Pierre Bourguignon J-E, Gore AC (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30(4):293–342PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Pinter A, Torok G, Borzsonyi M, Surjan A, Calk M, Kelecsenvi Z, Kocsis Z (1990) Long-term carcinogenicity bioassay of the herbicide atrazine in F344 rats. Neoplasma 37(5):533–544PubMedGoogle Scholar
  171. 171.
    Brown NM, Lamartiniere CA (1995) Xenoestrogens alter mammary gland differentiation and cell proliferation in the rat. Environ Health Perspect 103:708–713PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Jenkins S, Rowell C, Wang J, Lamartiniere CA (2007) Prenatal TCDD exposure predisposes for mammary cancer in rats. Reprod Toxicol 23:391–396PubMedCrossRefGoogle Scholar
  173. 173.
    Radisky DC, Hartmann LC (2009) Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia 14:181–191PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Simpkins JW, Swenberg JA, Weiss N, Brusick D, Eldridge JC, Stevens JT, Handa RJ, Hovey RC, Plant TM, Pastoor TP, Breckenridge CB (2011) Atrazine and breast cancer: a framework assessment of the toxicological and epidemiological evidence. Toxicol Sci 123(2):441–459PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    IARC (International Agency for Research on Cancer) (1997) Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC Monogr Eval Carcinog Risks Hum 69Google Scholar
  176. 176.
    Steenland K, Bertazzi P, Baccarelli A, Kogevinas M (2004) Dioxin revisited: developments since the 1997 IARC classification of dioxin as a human carcinogen. Environ Health Perspect 112(13):1265–1268PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Boffetta P, Mundt KA, Adami HO, Cole P, Mandel JS (2011) TCDD and cancer: a critical review of epidemiologic studies. Crit Rev Toxicol 41(7):622–636. (review)PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina: Association of Maternal Stilbestrol Therapy with tumor appearance in young women. N Engl J Med 284(16):878–881PubMedCrossRefGoogle Scholar
  179. 179.
    Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24(7):2273–2280PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150(7):3376–3382PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Haynes BA, Mookadam F (2009) Male gynecomastia. Mayo Clin Proc 84(8):672–672PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Felner EL, White PC (2000) Prepubertal gynecomastia: indirect exposure to estrogen cream. Pediatrics 105(4):e55–E55PubMedCrossRefGoogle Scholar
  183. 183.
    Henley DV, Lipson N, Korach KS, Bloch CA (2007) Prepubertal gynecomastia linked to lavender and tea tree oils. N Engl J Med 356(5):479–485PubMedCrossRefGoogle Scholar
  184. 184.
    Thayer KA, Foster PM (2007) Workgroup Report: National Toxicology Program Workshop on hormonally induced reproductive tumors: relevance of rodent bioassays. Environ Health Perspect 115(9):1351–1356PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Rudel RA, Attfield KR, Schifano JN, Brody JG (2007) Chemicals causing mammary gland tumors in animals signal new directions for epidemiology, chemicals testing, and risk assessment for breast cancer prevention. Cancer 109:2635–2666PubMedCrossRefGoogle Scholar
  186. 186.
    Cohn BA, Wolff MS, Cirillo PM, Sholtz RI (2007) DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect 115(10):1406–1414PubMedPubMedCentralGoogle Scholar
  187. 187.
    Ly D, Forman D, Ferlay J, Brinton LA, Cook MB (2013) An international comparison of male and female breast cancer incidence rates. Int J Cancer 132(8):1918–1926PubMedCrossRefGoogle Scholar
  188. 188.
    Skinner MK (2007) Endocrine disruptors and epigenetic transgenerational disease etiology. Pediatr Res 61:48R–50RPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.MPI ResearchMattawanUSA

Personalised recommendations