Pharmacophore Modeling: Methods and Applications

  • David Ryan Koes
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


A pharmacophore represents the essential features of a molecular interaction and are an integral part of modern computational drug discovery. This review provides an introduction into the basic concepts and approaches of pharmacophore-based drug design using a practical example. Recently developed approaches and tools for utilizing pharmacophores are also reviewed.


Pharmacophore Virtual screening Computer-aided drug design Structure-based drug design Rational design Protein–ligand interactions Drug discovery 



We would like to thank Lee McDermott, Dan Zuckerman, and Jocelyn Sunseri for their insightful feedback during the preparation of the manuscript. This work was supported by the National Institute of Health [R01GM108340]. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Braga RC, Andrade CH (2013) Assessing the performance of 3d pharmacophore models in virtual screening: how good are they? Curr Top Med Chem 13(9):1127–1138CrossRefPubMedGoogle Scholar
  2. 2.
    Guner O, Clement O, Kurogi Y (2004) Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr Med Chem 11(22):2991–3005CrossRefPubMedGoogle Scholar
  3. 3.
    Chemical Computing Group (2015) Molecular Operating Environment (MOE) version 2013.08. Chemical Computing Group, Inc.Google Scholar
  4. 4.
    Dixon S, Smondyrev A, Knoll E, Rao S, Shaw D, Friesner R (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10):647–671. doi: 10.1007/s10822-006-9087-6, PubMed:17124629 CrossRefPubMedGoogle Scholar
  5. 5.
    Leach AR, Gillet VJ, Lewis RA, Taylor R (2009) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53(2):539–558. doi: 10.1021/jm900817u, PubMed:19831387 CrossRefGoogle Scholar
  6. 6.
    Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11–12):444–450CrossRefPubMedGoogle Scholar
  7. 7.
    Dragos H (2011) Pharmacophore-based virtual screening. In: Bajorath J (ed) Chemoinformatics and computational chemical biology, vol 672, Methods in molecular biology. Humana Press, New York, pp 261–298Google Scholar
  8. 8.
    Mason JS, Good AC, Martin EJ (2001) 3-D pharmacophores in drug discovery. Curr Pharm Des 7(7):567–597CrossRefPubMedGoogle Scholar
  9. 9.
    Langer T, Krovat EM (2003) Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. Curr Opin Drug Discov Devel 6(3):370–376, PubMed:12833670 PubMedGoogle Scholar
  10. 10.
    Seidel T, Ibis G, Bendix F, Wolber G (2010) Strategies for 3D pharmacophore-based virtual screening: 3D pharmacophore elucidation and virtual screening. Drug Discov Today Technol 7(4):e221–e228CrossRefGoogle Scholar
  11. 11.
    Van Drie JH (2013) Generation of three-dimensional pharmacophore models. WIREs Comput Mol Sci 3(5):449–464CrossRefGoogle Scholar
  12. 12.
    Martin YC (2007) 4.06 - Pharmacophore modeling: 1 methods. In: Comprehensive medicinal chemistry {II}. Elsevier, Oxford, pp 119–147CrossRefGoogle Scholar
  13. 13.
    Chen GG, Zeng Q, Tse GMK (2008) Estrogen and its receptors in cancer. Med Res Rev 28(6):954–974CrossRefPubMedGoogle Scholar
  14. 14.
    Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. doi: 10.1021/jm300687e, PubMed:22716043. PubMed Central:PMC3405771CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    RDKit: open-source cheminformatics. Accessed 4 Sep 2012
  16. 16.
    Ebejer J-P, Morris GM, Deane C (2012) Freely available conformer generation methods: how good are they? J Chem Inf Model. doi: 10.1021/ci2004658, PubMed:22482737 PubMedGoogle Scholar
  17. 17.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035CrossRefGoogle Scholar
  18. 18.
    Koes DR, Camacho CJ (2011) Pharmer: efficient and exact pharmacophore search. J Chem Inf Model 51(6):1307–1314. doi: 10.1021/ci200097m, PubMed:21604800. PubMed Central:PMC3124593 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Güner OF, Phillip Bowen J (2014) Setting the record straight: the origin of the pharmacophore concept. J Chem Inf Model 54(5):1269–1283CrossRefPubMedGoogle Scholar
  20. 20.
    Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA (1998) Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl Chem 70(5):1129CrossRefGoogle Scholar
  21. 21.
    Hou X, Du J, Liu R, Zhou Y, Li M, Xu W, Fang H (2015) Enhancing the sensitivity of pharmacophore-based virtual screening by incorporating customized zbg features: a case study using histone deacetylase 8. J Chem Inf Model 55(4):861–871CrossRefPubMedGoogle Scholar
  22. 22.
    Koes D, Khoury K, Huang Y, Wang W, Bista M, Popowicz GM, Wolf S, Holak TA, Dömling A, Camacho CJ (2012) Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists. PLoS One 7(3):e32839 EP. doi: 10.1371/journal.pone.0032839, PubMed:22427896. PubMed Central:PMC3299697 CrossRefGoogle Scholar
  23. 23.
    Anstead GM, Carlson KE, Katzenellenbogen JA (1997) The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 62(3):268–303, PubMed:9071738 CrossRefPubMedGoogle Scholar
  24. 24.
    Sanders MPA, Barbosa AJM, Zarzycka B, Nicolaes GAF, Klomp JPG, de Vlieg J, Del Rio A (2012) Comparative analysis of pharmacophore screening tools. J Chem Inf Model 52(6):1607–1620CrossRefPubMedGoogle Scholar
  25. 25.
    Spitzer GM, Heiss M, Mangold M, Markt P, Kirchmair J, Wolber G, Liedl KR (2010) One concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of chemical search space. J Chem Inf Model 50(7):1241–1247. doi: 10.1021/ci100136b, PubMed:20583761 CrossRefPubMedGoogle Scholar
  26. 26.
    Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13(1–2):23–29. doi: 10.1016/j.drudis.2007.09.007, Epub 2007 Nov 5CrossRefPubMedGoogle Scholar
  27. 27.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. doi: 10.1186/1758-2946-3-33, PubMed:21982300. PubMed Central:PMC3198950 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Daylight theory manual, daylight version 4.9 ed. Feb 2008. Daylight Chemical Information Systems, Inc., Aliso Viejo, CAGoogle Scholar
  29. 29.
    Jones G (2010) Gape: an improved genetic algorithm for pharmacophore elucidation. J Chem Inf Model 50(11):2001–2018CrossRefPubMedGoogle Scholar
  30. 30.
    Jones G, Willet P, Glen R (2000) GASP: genetic algorithm superimposition program. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design, vol 2. International University Line, La Jolla, CA, pp 85–106Google Scholar
  31. 31.
    Gardiner EJ, Cosgrove DA, Taylor R, Gillet VJ (2009) Multiobjective optimization of pharmacophore hypotheses: bias toward low-energy conformations. J Chem Inf Model 49(12):2761–2773CrossRefPubMedGoogle Scholar
  32. 32.
    Taylor R, Cole JC, Cosgrove DA, Gardiner EJ, Gillet VJ, Korb O (2012) Development and validation of an improved algorithm for overlaying flexible molecules. J Comput Aided Mol Des 26(4):451–472CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Moser D, Wittmann SK, Kramer J, Blöcher R, Achenbach J, Pogoryelov D, Proschak E (2015) Peng: a neural gas-based approach for pharmacophore elucidation. method design, validation, and virtual screening for novel ligands of lta4h. J Chem Inf Model 55(2):284–293CrossRefPubMedGoogle Scholar
  34. 34.
    Korb O, Monecke P, Hessler G, Stützle T, Exner TE (2010) Pharmacophore: multiple flexible ligand alignment based on ant colony optimization. J Chem Inf Model 50(9):1669–1681CrossRefPubMedGoogle Scholar
  35. 35.
    Binns M, de Visser SP, Theodoropoulos C (2012) Modeling flexible pharmacophores with distance geometry, scoring, and bound stretching. J Chem Inf Model 52(2):577–588CrossRefPubMedGoogle Scholar
  36. 36.
    Artese A, Cross S, Costa G, Distinto S, Parrotta L, Alcaro S, Ortuso F, Cruciani G (2013) Molecular interaction fields in drug discovery: recent advances and future perspectives. WIREs Comput Mol Sci 3(6):594–613CrossRefGoogle Scholar
  37. 37.
    Cross S, Baroni M, Goracci L, Cruciani G (2012) Grid-based three-dimensional pharmacophores i: Flappharm, a novel approach for pharmacophore elucidation. J Chem Inf Model 52(10):2587–2598CrossRefPubMedGoogle Scholar
  38. 38.
    Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:W223–W228. doi: 10.1093/nar/gkn187, PubMed:18424800. PubMed Central:PMC2447755 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    The PyMOL Molecular Graphics System, Version 1.6. Schrödinger, LLC, August.
  40. 40.
    Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ (2008) Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. J Comput Biol 15(7):737–754. doi: 10.1089/cmb.2007.0130, PubMed:18662104. PubMed Central:PMC2699263 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Giangreco I, Cosgrove DA, Packer MJ (2013) An extensive and diverse set of molecular overlays for the validation of pharmacophore programs. J Chem Inf Model 53(4):852–866CrossRefPubMedGoogle Scholar
  42. 42.
    Cross S, Ortuso F, Baroni M, Costa G, Distinto S, Moraca F, Alcaro S, Cruciani G (2012) Grid-based three-dimensional pharmacophores ii: Pharmbench, a benchmark data set for evaluating pharmacophore elucidation methods. J Chem Inf Model 52(10):2599–2608CrossRefPubMedGoogle Scholar
  43. 43.
    Patel Y, Gillet VJ, Bravi G, Leach AR (2002) A comparison of the pharmacophore identification programs: catalyst, DISCO and GASP. J Comput Aided Mol Des 16(8):653–681, PubMed:12602956 CrossRefPubMedGoogle Scholar
  44. 44.
    Tiikkainen P, Markt P, Wolber G, Kirchmair J, Distinto S, Poso A, Kallioniemi O (2009) Critical comparison of virtual screening methods against the MUV data set. J Chem Inf Model 49(10):2168–2178. doi: 10.1021/ci900249b, PubMed:19799417 CrossRefPubMedGoogle Scholar
  45. 45.
    Manepalli S, Geffert LM, Surratt CK, Madura JD (2011) Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. J Chem Inf Model 51(9):2417–2426CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sanders MPA, Verhoeven S, de Graaf C, Roumen L, Vroling B, Nabuurs SB, de Vlieg J, Klomp JPG (2011) Snooker: a structure-based pharmacophore generation tool applied to class A GPCRs. J Chem Inf Model 51(9):2277–2292CrossRefPubMedGoogle Scholar
  47. 47.
    Klabunde T, Giegerich C, Evers A (2009) Sequence-derived three-dimensional pharmacophore models for g-protein-coupled receptors and their application in virtual screening. J Med Chem 52(9):2923–2932CrossRefPubMedGoogle Scholar
  48. 48.
    Sanders MPA, McGuire R, Roumen L, de Esch IJP, de Vlieg J, Klomp JPG, de Graaf C (2012) From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling. Med Chem Commun 3:28–38CrossRefGoogle Scholar
  49. 49.
    Bingjie H, Lill MA (2013) Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking. J Chem Inf Model 53(5):1179–1190CrossRefGoogle Scholar
  50. 50.
    Rafał K, Bojarski AJ (2013) New strategy for receptor-based pharmacophore query construction: a case study for 5-ht7 receptor ligands. J Chem Inf Model 53(12):3233–3243CrossRefGoogle Scholar
  51. 51.
    Wenbo Y, Lakkaraju SK, Raman EP, MacKerell AD Jr (2014) Site-identification by ligand competitive saturation (silcs) assisted pharmacophore modeling. J Comput Aided Mol Des 28(5):491–507CrossRefGoogle Scholar
  52. 52.
    Wenbo Y, Lakkaraju SK, Raman EP, Fang L, MacKerell AD (2015) Pharmacophore modeling using site-identification by ligand competitive saturation (silcs) with multiple probe molecules. J Chem Inf Model 55(2):407–420CrossRefGoogle Scholar
  53. 53.
    Bingjie H, Lill MA (2012) Protein pharmacophore selection using hydration-site analysis. J Chem Inf Model. doi: 10.1021/ci200620h, PubMed:22397751. PubMed Central:PMC3422394 Google Scholar
  54. 54.
    Grove LE, Hall DR, Beglov D, Vajda S, Kozakov D (2013) Ftflex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Bioinformatics 29(9):1218–1219CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ross GA, Morris GM, Biggin PC (2012) Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS One 7(3):e32036. doi: 10.1371/journal.pone.0032036, PubMed:22396746. PubMed Central:PMC3291545 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10(5):733–755CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wolber G, Langer T (2004) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45(1):160–169. doi: 10.1021/ci049885e, PubMed:15667141 CrossRefGoogle Scholar
  58. 58.
    Meslamani J, Li J, Sutter J, Stevens A, Bertrand HO, Rognan D (2012) Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling. J Chem Inf Model 52(4):943–955CrossRefPubMedGoogle Scholar
  59. 59.
    Koes DR, Camacho CJ (2012) ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res 40:W409–W414. doi: 10.1093/nar/gks378, PubMed:22553363. PubMed Central:PMC3394271 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49(10):2356–2368CrossRefPubMedGoogle Scholar
  61. 61.
    Bowman AL, Makriyannis A (2011) Approximating protein flexibility through dynamic pharmacophore models: application to fatty acid amide hydrolase (faah). J Chem Inf Model 51(12):3247–3253CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mason JS, Morize I, Menard PR, Cheney DL, Hulme C, Labaudinieres RF (1999) New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. J Med Chem 42(17):3251–3264. doi: 10.1021/jm9806998, PubMed:10464012 CrossRefPubMedGoogle Scholar
  63. 63.
    Mason JS, Cheney DL (2000) Library design and virtual screening using multiple 4 point pharmacophore fingerprints. Pac Symp Biocomput 5:576–587, PubMed:10902205 Google Scholar
  64. 64.
    Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason JS (2007) A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J Chem Inf Model 47(2):279–294. doi: 10.1021/ci600253e, PubMed:17381166 CrossRefPubMedGoogle Scholar
  65. 65.
    Desaphy J, Raimbaud E, Ducrot P, Rognan D (2013) Encoding protein-ligand interaction patterns in fingerprints and graphs. J Chem Inf Model 53(3):623–637CrossRefPubMedGoogle Scholar
  66. 66.
    Awale M, Reymond J-L (2014) Atom pair 2d-fingerprints perceive 3d-molecular shape and pharmacophores for very fast virtual screening of zinc and gdb-17. J Chem Inf Model 54(7):1892–1907CrossRefPubMedGoogle Scholar
  67. 67.
    Hähnke V, Schneider G (2011) Pharmacophore alignment search tool: influence of scoring systems on text-based similarity searching. J Comput Chem 32(8):1635–1647CrossRefPubMedGoogle Scholar
  68. 68.
    Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63CrossRefPubMedGoogle Scholar
  69. 69.
    Wood DJ, de Vlieg J, Wagener M, Ritschel T (2012) Pharmacophore fingerprint-based approach to binding site subpocket similarity and its application to bioisostere replacement. J Chem Inf Model 52(8):2031–2043CrossRefPubMedGoogle Scholar
  70. 70.
    Desaphy J, Azdimousa K, Kellenberger E, Rognan D (2012) Comparison and druggability prediction of protein-ligand binding sites from pharmacophore-annotated cavity shapes. J Chem Inf Model 52(8):2287–2299CrossRefPubMedGoogle Scholar
  71. 71.
    Raymond JW, Willett P (2002) Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J Comput Aided Mol Des 16(7):521–533, PubMed:12510884 CrossRefPubMedGoogle Scholar
  72. 72.
    Dror O, Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2009) Novel approach for efficient pharmacophore-based virtual screening: method and applications. J Chem Inf Model 49(10):2333–2343CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vilar S, Tatonetti NP, Hripcsak G (2015) 3D pharmacophoric similarity improves multi adverse drug event identification in pharmacovigilance. Sci Rep 5Google Scholar
  74. 74.
    Wang X, Chen H, Yang F, Gong J, Li S, Pei J, Liu X, Jiang H, Lai L, Li H (2014) idrug: a web-accessible and interactive drug discovery and design platform. J Cheminform 6(1):28CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    iDrug - an online interactive drug discovery and design platform. Accessed 4 May 2015
  76. 76.
    Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38:W609–W614. doi: 10.1093/nar/gkq300, PubMed:20430828. PubMed Central:PMC2896160 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    AnchorQuery. Accessed 4 May 2015
  78. 78.
    Ryan Koes D, Camacho CJ (2012) PocketQuery: protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Res. doi: 10.1093/nar/gks336, PubMed:22523085. PubMed Central:PMC3394328 Google Scholar
  79. 79.
    ZINCPharmer. Accessed 4 May 2015
  80. 80.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768. doi: 10.1021/ci3001277, Epub 2012 Jun 15CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Drwal MN, Griffith R (2013) Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol 10(3):e395–e401CrossRefPubMedGoogle Scholar
  82. 82.
    Koes DR, Baumgartner MP, Camacho CJ (2013) Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 53(8):1893–1904CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461, PubMedPubMedCentralGoogle Scholar
  84. 84.
    Planesas JM, Claramunt RM, Teixidó J, Borrell JI, Pérez-Nueno VI (2011) Improving vegfr-2 docking-based screening by pharmacophore postfiltering and similarity search postprocessing. J Chem Inf Model 51(4):777–787CrossRefPubMedGoogle Scholar
  85. 85.
    Thangapandian S, John S, Sakkiah S, Lee KW (2011) Molecular docking and pharmacophore filtering in the discovery of dual-inhibitors for human leukotriene a4 hydrolase and leukotriene c4 synthase. J Chem Inf Model 51(1):33–44CrossRefPubMedGoogle Scholar
  86. 86.
    Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) Development and validation of a modular, extensible docking program: Dock 5. J Comput Aided Mol Des 20(10-11):601–619CrossRefPubMedGoogle Scholar
  87. 87.
    Jiang L, Rizzo RC (2015) Pharmacophore-based similarity scoring for dock. J Phys Chem B 119(3):1083–1102CrossRefPubMedGoogle Scholar
  88. 88.
    Kramer C, Gedeck P (2010) Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets. J Chem Inf Model 50(11):1961–1969, 10.1021/ci100264e CrossRefPubMedGoogle Scholar
  89. 89.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computational & Systems BiologySchool of Medicine, University of PittsburghPittsburghUSA

Personalised recommendations