Skip to main content

Application of Human Induced Pluripotent Stem Cell Technology for Cardiovascular Regenerative Pharmacology

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2454))

  • 2632 Accesses

Abstract

Cardiovascular diseases are one of the leading causes of mortality in the western world. Myocardial infarction is among the most prevalent and results in significant cell loss within the myocardium. Similarly, numerous drugs have been identified as having cardiotoxic side effects. The adult human heart is however unable to instigate an effective repair mechanism and regenerate the myocardium in response to such damage. This is in large part due to the withdrawal of cardiomyocytes (CMs) from the cell cycle. Thus, identifying, screening, and developing agents that could enhance the proliferative capacity of CMs holds great potential in cardiac regeneration. Human induced pluripotent stem cells (hiPSCs) and their cardiovascular derivatives are excellent tools in the search for such agents. This chapter outlines state-of-the art techniques for the two-dimensional differentiation and attainment of hiPSC-derived CMs and endothelial cells (ECs). Bioreactor systems and three-dimensional spheroids derived from hiPSC-cardiovascular derivatives are explored as platforms for drug discovery before focusing on relevant assays that can be employed to assess cell proliferation and viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xin M, Olson EN, Bassel-Duby R (2013) Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 14:529–541. https://doi.org/10.1038/nrm3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karra R, Poss KD (2017) Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 127(2):427–436. https://doi.org/10.1172/jci89786

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leach JP, Martin JF (2018) Cardiomyocyte proliferation for therapeutic regeneration. Curr Cardiol Rep 20:63. https://doi.org/10.1007/s11886-018-1011-x

    Article  PubMed  Google Scholar 

  4. Quaife-Ryan GA, Sim CB, Ziemann M, Kaspi A, Rafehi H, Ramialison M, El-Osta A, Hudson JE, Porrello ER (2017) Multicellular transcriptional analysis of mammalian heart regeneration. Circulation 136(12):1123–1139. https://doi.org/10.1161/circulationaha.117.028252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Talman V, Kivelä R (2018) Cardiomyocyte-endothelial cell interactions in cardiac remodeling and regeneration. Front Cardiovasc Med 5:101. https://doi.org/10.3389/fcvm.2018.00101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190. https://doi.org/10.1126/science.1077857

    Article  CAS  PubMed  Google Scholar 

  7. Jopling C, Sleep E, Raya M, Martí M, Raya A, Izpisúa Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. https://doi.org/10.1038/nature08899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605. https://doi.org/10.1038/nature08804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080. https://doi.org/10.1126/science.1200708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marín-Juez R, Marass M, Gauvrit S, Rossi A, Lai SL, Materna SC, Black BL, Stainier DY (2016) Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc Natl Acad Sci U S A 113(40):11237–11242. https://doi.org/10.1073/pnas.1605431113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim JJ, Yang L, Lin B, Zhu X et al (2015) Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. J Mol Cell Cardiol 81:81–93. https://doi.org/10.1016/j.yjmcc.2015.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang XH, Wei H, Šarić T, Hescheler J et al (2015) Regionally diverse mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes. Cell Calcium 57(5–6):321–336. https://doi.org/10.1016/j.ceca.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xi J, Khalil M, Shishechian N, Hannes T et al (2010) Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB J 24(8):2739–2751. https://doi.org/10.1096/fj.09-145177

    Article  CAS  PubMed  Google Scholar 

  14. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT et al (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409. https://doi.org/10.1161/CIRCRESAHA.115.307778

    Article  CAS  PubMed  Google Scholar 

  15. Zhou P, Pu WT (2016) Recounting cardiac cellular composition. Circ Res 118(3):368–370. https://doi.org/10.1161/CIRCRESAHA.116.308139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nees S, Weiss DR, Senftl A, Knott M et al (2011) Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 302(1):H69–H84. https://doi.org/10.1152/ajpheart.00359.2011

    Article  CAS  PubMed  Google Scholar 

  17. Litviňuková M, Talavera-López C, Maatz H, Reichart D et al (2020) Cells of the adult human heart. Nature 588(7838):466–472. https://doi.org/10.1038/s41586-020-2797-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin GR, Evans MJ (1975) Differentiation of clonal lines of Teratocarcinoma cells: formation of Embryoid bodies in vitro (mouse tumors/tissue culture/pluripotent cells/cell determination/endoderm). Proc Natl Acad Sci U S A 72(4):1441–1445. https://doi.org/10.1073/pnas.72.4.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48(3):173–182. https://doi.org/10.1111/j.1432-0436.1991.tb00255.x

    Article  CAS  PubMed  Google Scholar 

  20. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108(3):407–414. https://doi.org/10.1172/JCI12131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu C, Police S, Rao N, Carpenter MK (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91(6):501–508. https://doi.org/10.1161/01.RES.0000035254.80718.91

    Article  CAS  PubMed  Google Scholar 

  22. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of co-culture with visceral endoderm-like cells. Circulation 107(21):2733–2740. https://doi.org/10.1161/01.CIR.0000068356.38592.68

    Article  CAS  PubMed  Google Scholar 

  23. Laflamme MA, Chen KY, Naumova AV, Muskheli V et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024. https://doi.org/10.1038/nbt1327

    Article  CAS  PubMed  Google Scholar 

  24. Paige SL, Osugi T, Afanasiev OK, Pabon L et al (2010) Endogenous wnt/β-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One 5(6). https://doi.org/10.1371/journal.pone.0011134

  25. Lian X, Hsiao C, Wilson G, Zhu K et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109(27):E1848–E1857. https://doi.org/10.1073/pnas.1200250109

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lian X, Zhang J, Azarin SM, Zhu K et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175. https://doi.org/10.1038/nprot.2012.150

    Article  CAS  PubMed  Google Scholar 

  27. Guyette JP, Charest JM, Mills RW, Jank BJ et al (2016) Bioengineering human myocardium on native extracellular matrix. Circ Res 118(1):56–72. https://doi.org/10.1161/CIRCRESAHA.115.306874

    Article  CAS  PubMed  Google Scholar 

  28. Burridge PW, Matsa E, Shukla P, Lin ZC et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860. https://doi.org/10.1038/nMeth.2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386. https://doi.org/10.1016/j.cell.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao N, Huang Y, Zheng J, Spencer CI et al (2016) Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352(6290):1216–1220. https://doi.org/10.1126/science.aaf1502

    Article  CAS  PubMed  Google Scholar 

  31. Huang C, Tu W, Fu Y, Wang J et al (2018) Chemical-induced cardiac reprogramming in vivo. Cell Res 28(6):686–689. https://doi.org/10.1038/s41422-018-0036-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giacomelli E, Bellin M, Sala L, van Meer BJ et al (2017) Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144(6):1008–1017. https://doi.org/10.1242/dev.143438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Masumoto H, Ikuno T, Takeda M, Fukushima H et al (2014) Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 4(1):1–7. https://doi.org/10.1038/srep06716

    Article  CAS  Google Scholar 

  34. Zhang L, Guo J, Zhang P, Xiong Q et al (2015a) Derivation and high engraftment of patient- specific cardiomyocyte sheet using induced pluripotent stem cells generated from adult cardiac fibroblast. Circulation 8(1):156–166. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001317

    Article  CAS  PubMed  Google Scholar 

  35. Goldfracht I, Protze S, Shiti A, Setter N et al (2020) Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat Commun 11(1):75. https://doi.org/10.1038/s41467-019-13868-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lekven AC, Thorpe CJ, Waxman JS, Moon RT (2001) Zebrafish wnt8 encodes two Wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Develop Cell 1(1):103–114. https://doi.org/10.1016/S1534-5807(01)00007-7

    Article  CAS  Google Scholar 

  37. Ueno S, Weidinger G, Osugi T, Kohn AD et al (2007) Biphasic role for Wnt/β-catenin signalling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A 104(23):9685–9690. https://doi.org/10.1073/pnas.0702859104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prasain N, Lee MR, Vemula S et al (2014) Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat Biotechnol 32(11):1151–1157. https://doi.org/10.1038/nbt.3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martín-Ibáñez R, Sareen D (2020) Manufacturing of human iPSC-derived cell therapies: road to the clinic. Cell Gene Therapy Insights 6(1):177–191. https://doi.org/10.18609/cgti.2020.023

    Article  Google Scholar 

  40. Meng G, Liu S, Poon A, Rancourt DE (2017) Optimizing human induced pluripotent stem cell expansion in stirred-suspension culture. Stem Cells Dev 26(24):1804–1817. https://doi.org/10.1089/scd.2017.0090

    Article  CAS  PubMed  Google Scholar 

  41. Huang S, Razvi A, Anderson-Jenkins Z, Sirskyj D et al (2020) Process development and scale- up of pluripotent stem cell manufacturing. Cell and Gene Therapy Insights 6:1277–1298. https://doi.org/10.18609/cgti.2020.141

    Article  Google Scholar 

  42. Ma W, Wei S, Zhang B, Li W (2020) Molecular mechanisms of cardiomyocyte death in drug- induced cardiotoxicity. Front Cell Dev Biol 8:434. https://doi.org/10.3389/fcell.2020.00434

    Article  PubMed  PubMed Central  Google Scholar 

  43. Corremans R, Adao R, De Keulenaer GW, Leite-Moreira AF, Bras-Silva C (2019) Update on pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Clin Exp Pharmacol Physiol 46:204–215. https://doi.org/10.1111/1440-1681.13036

    Article  CAS  PubMed  Google Scholar 

  44. Karhu ST, Kinnunen SM, Tölli M, Välimäki MJ, Szabo Z, Talman V, Ruskoaho H (2020) GATA4- targeted compounds exhibit cardioprotective actions against doxorubicin-induced toxicity in vitro and in vivo: establishment of a chronic cardiotoxicity model using human iPSC-derived cardiomyocytes. Arch Toxicol 94:2113–2130. https://doi.org/10.1007/s00204-020-02711-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karhu ST, Välimäki MJ, Jumppanen M, Kinnunen SM et al (2018) Stem cells are the most sensitive screening tool to identify toxicity of GATA4-targeted novel small-molecule compounds. Arch Toxicol 92(9):2897–2911. https://doi.org/10.1007/s00204-018-2257-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roukos V, Pegoraro G, Voss TC, Misteli T (2015) Cell cycle staging of individual cells by fluorescence microscopy. Nat Protoc 10(2):334–348. https://doi.org/10.1038/nprot.2015.016

    Article  PubMed  PubMed Central  Google Scholar 

  47. BrdU staining and BrdU assay protocol (2021) Abcam. https://www.abcam.com/protocols/brdu-staining-protocol. Accessed 29 Jan 2021

  48. Pérez-Cadahía B, Drobic B, Davie JR (2009) H3 phosphorylation: dual role in mitosis and interphase. Biochem Cell Biol 87(5):695–709. https://doi.org/10.1139/o09-053

    Article  PubMed  Google Scholar 

  49. Sun X, Kaufman PD (2018) Ki-67: more than a proliferation marker. Chromosoma 127(2):175–186. https://doi.org/10.1007/s00412-018-0659-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miyazaki T, Futaki S, Suemori H, Taniguchi Y et al (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236. https://doi.org/10.1038/ncomms2231

    Article  CAS  PubMed  Google Scholar 

  51. Melkoumian Z, Weber JL, Weber DM, Fadeev AG et al (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28(6):606–610. https://doi.org/10.1038/nbt.1629.36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. S. Tuuli Karhu for the expert advice on the doxorubicin model. The research was co-funded by the Hungarian National Research, Development and Innovation Fund (NKFIA; NVKP-16-1- 2016-0017, “National Heart Program” and 128444), the NIHR Imperial Biomedical Research Centre (BRC), the Medical Research Council (MR/R025002/1), Academy of Finland (grants 321564, 328909), the Finnish Foundation for Cardiovascular Research, Sigrid Jusélius Foundation, University of Helsinki and Drug Research Doctoral Programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gábor Földes or Virpi Talman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Majid, Q.A., Orsolits, B., Pohjolainen, L., Kovács, Z., Földes, G., Talman, V. (2021). Application of Human Induced Pluripotent Stem Cell Technology for Cardiovascular Regenerative Pharmacology. In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2021_369

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_369

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics