Advertisement

pp 1-8 | Cite as

Efficient Labeling of Human Mesenchymal Stem Cells Using Iron Oxide Nanoparticles

  • Sonali Rawat
  • Suchi Gupta
  • Madhusudan Bhat
  • Amit Kumar Dinda
  • Sujata Mohanty
Protocol
Part of the Methods in Molecular Biology book series

Abstract

Stem cells have been used in multiple clinical trials. Tracking these transplanted cells in vivo will provide real-time information on the fate of these cells. Iron oxide labeling is one such uncomplicated noninvasive labeling method. These transformed nanocrystals can be used for varied applications including stem-cell tracking, magnetic resonance imaging, and theranostics. Here we elucidate the protocol for iron oxide nanoparticles synthesis (IONPS) and labeling of mesenchymal stem cells which can be used for imaging and tracking cells to understand their fate in in vivo studies.

Keyword

Iron oxide Labeling Stem cells Nanoparticles Noninvasive MRI IONPS 

Notes

Acknowledgments

This work was supported by Department of Biotechnology, Government of India.

References

  1. 1.
    Alexander MS, Casar JC, Motohashi N (2015) Stem cell differentiation and therapeutic use. Stem Cells Int 2015:308128. Hindawi Limited.  https://doi.org/10.1155/2015/308128CrossRefGoogle Scholar
  2. 2.
    Soenen SJH et al (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32(1):195–205.  https://doi.org/10.1016/j.biomaterials.2010.08.075CrossRefGoogle Scholar
  3. 3.
    Naqvi S et al (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989. Dove Press.  https://doi.org/10.2147/IJN.S13244CrossRefGoogle Scholar
  4. 4.
    Kang YS et al (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8, 9:2209–2211. American Chemical Society.  https://doi.org/10.1021/CM960157JCrossRefGoogle Scholar
  5. 5.
    Khalil MI (2015) Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab J Chem 8(2):279–284. Elsevier.  https://doi.org/10.1016/J.ARABJC.2015.02.008CrossRefGoogle Scholar
  6. 6.
    Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205.  https://doi.org/10.1021/ja026501xCrossRefGoogle Scholar
  7. 7.
    Martelli S et al (2000) Production of iron-oxide nanoparticles by laser-induced pyrolysis of gaseous precursors. Appl Surf Sci 154–155:353–359.  https://doi.org/10.1016/S0169-4332(99)00385-2CrossRefGoogle Scholar
  8. 8.
    Bomatí-Miguel O et al (2006) Core–shell iron–iron oxide nanoparticles synthesized by laser-induced pyrolysis. Small 2(12):1476–1483.  https://doi.org/10.1002/smll.200600209CrossRefGoogle Scholar
  9. 9.
    Sun S et al (2004) Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279.  https://doi.org/10.1021/ja0380852CrossRefGoogle Scholar
  10. 10.
    Jana NR, Chen Y, Peng X (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935.  https://doi.org/10.1021/cm049221kCrossRefGoogle Scholar
  11. 11.
    Kakkar A et al (2019) Adipose tissue derived mesenchymal stem cells are better respondents to TGFβ1 for in vitro generation of cardiomyocyte-like cells. Mol Cell Biochem.  https://doi.org/10.1007/s11010-019-03570-3Google Scholar
  12. 12.
    Chen ZP et al (2008) Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloids Surf A Physicochem Eng Asp 316(1–3):210–216.  https://doi.org/10.1016/j.colsurfa.2007.09.017.CrossRefGoogle Scholar
  13. 13.
    Dinda A et al (2012) Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int J Nanomedicine:3503.  https://doi.org/10.2147/IJN.S32694
  14. 14.
    Rho W-Y et al (2014) Facile synthesis of monodispersed silica-coated magnetic nanoparticles. J Ind Eng Chem 20(5):2646–2649.  https://doi.org/10.1016/j.jiec.2013.12.014CrossRefGoogle Scholar
  15. 15.
    Basiruddin S et al (2010) Advances in coating chemistry in deriving soluble functional nanoparticle. J Phys Chem C 114(25):11009–11017.  https://doi.org/10.1021/jp100844dCrossRefGoogle Scholar
  16. 16.
    Saha A et al (2009) Functionalized plasmonic−fluorescent nanoparticles for imaging and detection. J Phys Chem C 113(43):18492–18498. American Chemical Society.  https://doi.org/10.1021/jp904791hCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2019

Authors and Affiliations

  • Sonali Rawat
    • 1
  • Suchi Gupta
    • 1
  • Madhusudan Bhat
    • 2
  • Amit Kumar Dinda
    • 2
  • Sujata Mohanty
    • 1
  1. 1.Stem Cell Facility (DBT-Center of Excellence for Stem Cell Research)All India Institute of Medical SciencesNew DelhiIndia
  2. 2.Department of PathologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations