Advertisement

pp 1-14 | Cite as

Metabolic Labeling of Live Stem Cell for In Vitro Imaging and In Vivo Tracking

  • Sang-Soo Han
  • Sun-Woong KangEmail author
Protocol
Part of the Methods in Molecular Biology book series

Abstract

Stem cell therapy offers promising solutions to diseases and injuries that traditional medicines and therapies can’t effectively cure. To get and explain their full therapeutic potentials, the survival, viability, integration, homing, and differentiation of stem cells after transplant must be clearly understood. To meet these urgent needs, noninvasive stem cell imaging and tracking technologies have been developed. Metabolic labeling technique is one of the most powerful tools for live cell imaging and tracking. In addition, it has many advantages for in vivo live cell imaging and tracking such as low background, correlation of survival, and very toxic and nontoxic by-products. Herein, we described the fundamental information and process of metabolic labeling techniques and suggested optimal condition for in vitro and in vivo imaging and tracking of human umbilical cord blood-derived endothelial progenitor cells (hUCB-EPCs). Based on this study, metabolic labeling techniques can be helpful for understanding the safety and effectiveness of stem cell-based therapy and determining the utility of stem cells in downstream experiments.

Keywords

hUCB-EPCs Metabolic labeling Azide-tagged sugars Copper-free click chemistry Nontoxic 

Notes

Acknowledgments

This work supported by grants (NRF-2017M3A9C7065685 and NRF-2016M3A9B4919616) from National Research Foundation funded by the Ministry of Science and ICT, Korea.

References

  1. 1.
    Trounson A, DeWitt ND (2016) Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17:194.  https://doi.org/10.1038/nrm.2016.10CrossRefGoogle Scholar
  2. 2.
    Park KI, Ourednik J, Ourednik V, Taylor RM, Aboody KS, Auguste KI, Lachyankar MB, Redmond DE, Snyder EY (2002) Global gene and cell replacement strategies via stem cells. Gene Ther 9:613.  https://doi.org/10.1038/sj.gt.3301721CrossRefGoogle Scholar
  3. 3.
    Nadig RR (2009) Stem cell therapy—hype or hope? A review. J Conserv Dent 12(4):131–138.  https://doi.org/10.4103/0972-0707.58329CrossRefGoogle Scholar
  4. 4.
    Kim MH, Lee YJ, Kang JH (2016) Stem cell monitoring with a direct or indirect labeling method. Nucl Med Mol Imaging 50(4):275–283.  https://doi.org/10.1007/s13139-015-0380-yCrossRefGoogle Scholar
  5. 5.
    Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8(11):677–688.  https://doi.org/10.1038/nrclinonc.2011.141CrossRefGoogle Scholar
  6. 6.
    Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818.  https://doi.org/10.1038/nbt.2993CrossRefGoogle Scholar
  7. 7.
    Youn H, Hong KJ (2012) In vivo non invasive molecular imaging for immune cell tracking in small animals. Immune Netw 12(6):223–229.  https://doi.org/10.4110/in.2012.12.6.223CrossRefGoogle Scholar
  8. 8.
    Marks KM, Nolan GP (2006) Chemical labeling strategies for cell biology. Nat Methods 3(8):591–596.  https://doi.org/10.1038/nmeth906CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Dasilva JN, Hadizad T, Thorn S, Kuraitis D, Renaud JM, Ahmadi A, Kordos M, Dekemp RA, Beanlands RS, Suuronen EJ, Ruel M (2012) (18)F-FDG cell labeling may underestimate transplanted cell homing: more accurate, efficient, and stable cell labeling with hexadecyl-4-[(18)F]fluorobenzoate for in vivo tracking of transplanted human progenitor cells by positron emission tomography. Cell Transplant 21(9):1821–1835.  https://doi.org/10.3727/096368911x637416CrossRefGoogle Scholar
  10. 10.
    Bindslev L, Haack-Sorensen M, Bisgaard K, Kragh L, Mortensen S, Hesse B, Kjaer A, Kastrup J (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33(10):1171–1177.  https://doi.org/10.1007/s00259-006-0093-7CrossRefGoogle Scholar
  11. 11.
    Kraitchman DL, Bulte JWM (2008) Imaging of stem cells using MRI. Basic Res Cardiol 103(2):105–113.  https://doi.org/10.1007/s00395-008-0704-5CrossRefGoogle Scholar
  12. 12.
    Nejadnik H, Castillo R, Daldrup-Link HE (2013) Magnetic resonance imaging and tracking of stem cells. Methods Mol Biol 1052:167–176.  https://doi.org/10.1007/7651_2013_16CrossRefGoogle Scholar
  13. 13.
    Xie R, Dong L, Du Y, Zhu Y, Hua R, Zhang C, Chen X (2016) In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc Natl Acad Sci 113(19):5173–5178.  https://doi.org/10.1073/pnas.1516524113CrossRefGoogle Scholar
  14. 14.
    Yoon HI, Yhee JY, Na JH, Lee S, Lee H, Kang S-W, Chang H, Ryu JH, Lee S, Kwon IC, Cho YW, Kim K (2016) Bioorthogonal copper free click chemistry for labeling and tracking of chondrocytes in vivo. Bioconjug Chem 27(4):927–936.  https://doi.org/10.1021/acs.bioconjchem.6b00010CrossRefGoogle Scholar
  15. 15.
    Lee SY, Lee S, Lee J, Yhee JY, Yoon HI, Park S-J, Koo H, Moon S-H, Lee H, Cho YW, Kang SW, Lee S-Y, Kim K (2016) Non-invasive stem cell tracking in hindlimb ischemia animal model using bio-orthogonal copper-free click chemistry. Biochem Biophys Res Commun 479(4):779–786.  https://doi.org/10.1016/j.bbrc.2016.09.132CrossRefGoogle Scholar
  16. 16.
    Zhang X, Zhang Y (2013) Applications of azide-based bioorthogonal click chemistry in glycobiology. Molecules 18(6):7145–7159.  https://doi.org/10.3390/molecules18067145CrossRefGoogle Scholar
  17. 17.
    Laughlin ST, Bertozzi CR (2007) Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2(11):2930–2944.  https://doi.org/10.1038/nprot.2007.422CrossRefGoogle Scholar
  18. 18.
    Nwe K, Brechbiel MW (2009) Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm 24(3):289–302.  https://doi.org/10.1089/cbr.2008.0626CrossRefGoogle Scholar
  19. 19.
    Lin R-Z, Dreyzin A, Aamodt K, Dudley AC, Melero-Martin JM (2011) Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant 20(4):515–522.  https://doi.org/10.3727/096368910X532729CrossRefGoogle Scholar
  20. 20.
    Nagano M, Yamashita T, Hamada H, Ohneda K, Kimura K, Nakagawa T, Shibuya M, Yoshikawa H, Ohneda O (2007) Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood 110(1):151–160.  https://doi.org/10.1182/blood-2006-10-047092CrossRefGoogle Scholar
  21. 21.
    Chopra H, Hung MK, Kwong DL, Zhang CF, Pow EHN (2018) Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Int 2018:24.  https://doi.org/10.1155/2018/9847015CrossRefGoogle Scholar
  22. 22.
    Kang SW, Lee S, Na JH, Yoon HI, Lee DE, Koo H, Cho YW, Kim SH, Jeong SY, Kwon IC, Choi K, Kim K (2014) Cell labeling and tracking method without distorted signals by phagocytosis of macrophages. Theranostics 4(4):420–431.  https://doi.org/10.7150/thno.7265CrossRefGoogle Scholar
  23. 23.
    Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867.  https://doi.org/10.1016/j.cell.2006.08.019CrossRefGoogle Scholar
  24. 24.
    Han S-S, Shim H-E, Park S-J, Kim B-C, Lee D-E, Chung H-M, Moon S-H, Kang S-W (2018) Safety and optimization of metabolic labeling of endothelial progenitor cells for tracking. Sci Rep 8(1):13212.  https://doi.org/10.1038/s41598-018-31594-0CrossRefGoogle Scholar
  25. 25.
    Boyce M, Carrico IS, Ganguli AS, Yu SH, Hangauer MJ, Hubbard SC, Kohler JJ, Bertozzi CR (2011) Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc Natl Acad Sci U S A 108(8):3141–3146.  https://doi.org/10.1073/pnas.1010045108CrossRefGoogle Scholar
  26. 26.
    Goettig P (2016) Effects of glycosylation on the enzymatic activity and mechanisms of proteases. Int J Mol Sci 17(12):1969.  https://doi.org/10.3390/ijms17121969CrossRefGoogle Scholar
  27. 27.
    Nath NS, Bhattacharya I, Tuck AG, Schlipalius DI, Ebert PR (2011) Mechanisms of phosphine toxicity. J Toxicol 2011:9.  https://doi.org/10.1155/2011/494168CrossRefGoogle Scholar
  28. 28.
    Mbua NE, Guo J, Wolfert MA, Steet R, Boons GJ (2011) Strain-promoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis. Chembiochem 12(12):1912–1921.  https://doi.org/10.1002/cbic.201100117CrossRefGoogle Scholar
  29. 29.
    Teo CF, Wells L (2014) Monitoring protein O-linked β-N-acetylglucosamine status via metabolic labeling and copper-free click chemistry. Anal Biochem 464:70–72.  https://doi.org/10.1016/j.ab.2014.06.010CrossRefGoogle Scholar
  30. 30.
    Tian H, Sakmar TP, Huber T (2016) A simple method for enhancing the bioorthogonality of cyclooctyne reagent. Chem Commun 52(31):5451–5454.  https://doi.org/10.1039/C6CC01321JCrossRefGoogle Scholar
  31. 31.
    Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D (2011) E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 12(7):720–726.  https://doi.org/10.1038/embor.2011.88CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2019

Authors and Affiliations

  1. 1.Research Group for Biomimetic Advanced TechnologyKorea Institute of ToxicologyDaejeonKorea
  2. 2.Applied Bioresources Research DivisionFreshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological ResourceSangjuKorea
  3. 3.Department of Human and Environmental ToxicologyUniversity of Science and TechnologyDaejeonKorea

Personalised recommendations