pp 1-13 | Cite as

Molecular Imaging of Therapeutic Effect of Mesenchymal Stem Cell-Derived Exosomes for Hindlimb Ischemia Treatment

  • Kaiyue Zhang
  • Zongjin LiEmail author
Part of the Methods in Molecular Biology book series


Critical limb ischemia is a major cause of morbidity and mortality worldwide. Recently, many studies confirmed that MSC-derived exosomes (MSC-exosomes) had potential therapeutic effect to treat hindlimb ischemia through pro-angiogenesis. The therapeutic angiogenesis is a critical measurement to judge the beneficial effect of MSC-exosomes treatment. Formerly, the therapeutic effect of MSC-exosomes was usually evaluated through clinical assessment and histopathological examination. Here, we describe a strategy to evaluate the therapeutic effect of MSC-exosomes by monitoring the therapeutic angiogenesis with bioluminescent imaging in hindlimb ischemia mice models.


MSC Exosome Hindlimb ischemia Bioluminescent imaging Firefly luciferase Luciferin 



This research was supported by National Key R&D Program of China (2017YFA0103200), National Natural Science Foundation of China (81671734), Key Projects of Tianjin Science and Technology Support Program (18YFZCSY00010), Fundamental Research Funds for the Central Universities (63181114).


  1. 1.
    Shishehbor MH, White CJ, Gray BH et al (2016) Critical limb ischemia: an expert statement. J Am Coll Cardiol 68(18):2002–2015Google Scholar
  2. 2.
    Inampudi C, Akintoye E, Ando T et al (2018) Angiogenesis in peripheral arterial disease. Curr Opin Pharmacol 39:60–67Google Scholar
  3. 3.
    Kawarada O, Zen K, Hozawa K et al (2018) Contemporary critical limb ischemia: Asian multidisciplinary consensus statement on the collaboration between endovascular therapy and wound care. Cardiovasc Interv Ther 33(4):297–312Google Scholar
  4. 4.
    Parikh PP, Liu ZJ, Velazquez OC (2017) A molecular and clinical review of stem cell therapy in critical limb ischemia. Stem Cells Int 2017:3750829Google Scholar
  5. 5.
    Lachmann N, Nikol S (2007) Therapeutic angiogenesis for peripheral artery disease: stem cell therapy. Vasa 36(4):241–251Google Scholar
  6. 6.
    Carmeliet P, Baes M (2008) Metabolism and therapeutic angiogenesis. N Engl J Med 358(23):2511–2512Google Scholar
  7. 7.
    Simons M, Ware JA (2003) Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2(11):863–871Google Scholar
  8. 8.
    Manuel GE, Johnson T, Liu D (2017) Therapeutic angiogenesis of exosomes for ischemic stroke. Int J Physiol Pathophysiol Pharmacol 9(6):188–191Google Scholar
  9. 9.
    Annex BH (2013) Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol 10(7):387–396Google Scholar
  10. 10.
    Liew A, O’Brien T (2012) Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 3(4):28Google Scholar
  11. 11.
    Qadura M, Terenzi DC, Verma S et al (2017) Cell therapy for critical limb ischemia: an integrated review of pre-clinical and clinical studies. Stem Cells 36(2):161–171Google Scholar
  12. 12.
    Desrochers LM, Antonyak MA, Cerione RA (2016) Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev Cell 37(4):301–309Google Scholar
  13. 13.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289Google Scholar
  14. 14.
    Todorova D, Simoncini S, Lacroix R et al (2017) Extracellular vesicles in angiogenesis. Circ Res 120(10):1658–1673Google Scholar
  15. 15.
    Rani S, Ryan AE, Griffin MD et al (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823Google Scholar
  16. 16.
    Du W, Zhang K, Zhang S et al (2017) Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials 133:70–81Google Scholar
  17. 17.
    Zhang K, Zhao X, Chen X et al (2018) Enhanced therapeutic effects of MSC-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces 10(36):30081–30091Google Scholar
  18. 18.
    Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353Google Scholar
  19. 19.
    Olsson AK, Dimberg A, Kreuger J et al (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371Google Scholar
  20. 20.
    Zhang N, Fang Z, Contag PR et al (2004) Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 103(2):617–626Google Scholar
  21. 21.
    Mezzanotte L, van’t Root M, Karatas H et al (2017) In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 35(7):640–652Google Scholar
  22. 22.
    Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29(12):624–633Google Scholar
  23. 23.
    Negrin RS, Contag CH (2006) In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 6(6):484–490Google Scholar

Copyright information

© Springer Science+Business Media New York 2019

Authors and Affiliations

  1. 1.Nankai University School of MedicineTianjinChina
  2. 2.State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
  3. 3.The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life ScienceNankai UniversityTianjinChina

Personalised recommendations