pp 1-18 | Cite as

Multiphoton Microscopy for Noninvasive and Label-Free Imaging of Human Skin and Oral Mucosa Equivalents

  • Gopu SriramEmail author
  • Thankiah Sudhaharan
  • Graham D. Wright
Part of the Methods in Molecular Biology book series


Multiphoton microscopy has emerged as a powerful modality for noninvasive, spatial, and temporal imaging of biological tissues without the use of labels and/or dyes. It provides complimentary imaging modalities, which include two-photon excited fluorescence (2PEF) and second harmonic generation (SHG). 2PEF from endogenous chromophores such as nicotinamide adenine dinucleotides (NADH), flavins and keratin enable visualization of cellular and subcellular structures. SHG provides visualization of asymmetric macromolecular structures such as collagen. These modalities enable the visualization of biochemical and biological alterations within live tissues in their native state.

Organotypic cultures of the skin and oral mucosa equivalents have been increasingly used across basic and translational research. However, assessment of the skin and oral mucosa equivalents is predominantly based on histological techniques which are not suited for real-time imaging and longitudinal studies of the tissues in their native state. 2PEF from endogenous chromophores and SHG from collagen can be effectively used as an imaging tool for noninvasive and label-free acquisition of cellular and matrix structures of live skin and oral mucosa cultures.

In this chapter, the methods for noninvasive and label-free imaging of monolayer and organotypic cultures of the skin and oral mucosa using multiphoton microscopy are described.


Noninvasive imaging Two-photon microscopy Multiphoton microscopy Second harmonic generation Organotypic culture Skin equivalents Oral mucosa equivalents Fibrin Collagen 3D imaging 



This work was supported by grants (GS) from Singapore Ministry of Education, NUS Start Up Grant (R221000118133) and Grant of Undergraduate Research Opportunity Program (Project 2017-09), Faculty of Dentistry, National University of Singapore. The A*STAR Microscopy Platform (TS & GDW) is supported by funding from A*STAR and Singapore’s National Research Foundation through the Shared Infrastructure Support grant for SingaScope—a nationwide microscopy infrastructure network (NRF2017_SISFP10). The authors also thank Muniraj Giridharan and Siti Kamariah Ahmad for their help in sample preparation. The authors thank Dr. J. Rheinwald (Harvard Medical School, Boston, MA) for his kind gift of immortalized human N/TERT-1 epidermal keratinocytes and OKF6 oral keratinocytes.


  1. 1.
    Roberts MS, Dancik Y, Prow TW, Thorling CA, Lin LL, Grice JE, Robertson TA, Konig K, Becker W (2011) Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur J Pharm Biopharm 77(3):469–488. Scholar
  2. 2.
    Dancik Y, Sriram G, Rout B, Zou Y, Bigliardi-Qi M, Bigliardi PL (2018) Physical and compositional analysis of differently cultured 3D human skin equivalents by confocal Raman spectroscopy. Analyst 143(5):1065–1076. Scholar
  3. 3.
    Chen LC, Lloyd WR, Kuo S, Kim HM, Marcelo CL, Feinberg SE, Mycek MA (2014) The potential of label-free nonlinear optical molecular microscopy to non-invasively characterize the viability of engineered human tissue constructs. Biomaterials 35(25):6667–6676. Scholar
  4. 4.
    Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21(11):1356–1360. Scholar
  5. 5.
    Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C (2009) Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 17(16):13354–13364Google Scholar
  6. 6.
    Sriram G, Bigliardi PL, Bigliardi-Qi M (2019) Full-thickness human skin equivalent models of atopic dermatitis. Methods Mol Biol 1879:367–383.
  7. 7.
    Sriram G, Alberti M, Dancik Y, Wu B, Wu R, Feng Z, Ramasamy S, Bigliardi PL, Bigliardi-Qi M, Wang Z (2018) Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Mater Today 21(4):326–340.
  8. 8.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. Scholar
  9. 9.
    Dancik Y, Favre A, Loy CJ, Zvyagin AV, Roberts MS (2013) Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo. J Biomed Opt 18(2):26022. Scholar
  10. 10.
    Pal R, Shilagard T, Yang J, Villarreal P, Brown T, Qiu S, McCammon S, Resto V, Vargas G (2016) Remodeling of the epithelial-connective tissue interface in oral epithelial dysplasia as visualized by noninvasive 3D imaging. Cancer Res 76(16):4637–4647. Scholar
  11. 11.
    Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely PJ, Ramanujam N (2007) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12(2):024014. Scholar
  12. 12.
    Yew E, Rowlands C, So PT (2014) Application of multiphoton microscopy in dermatological studies: a mini-review. J Innov Opt Health Sci 7(5):1330010. Scholar
  13. 13.
    Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5.
  14. 14.
    Pavlova I, Williams M, El-Naggar A, Richards-Kortum R, Gillenwater A (2008) Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res 14(8):2396–2404. Scholar
  15. 15.
    Jabbour JM, Cheng S, Malik BH, Cuenca R, Jo JA, Wright J, Cheng Y-SL, Maitland KC (2013) Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer. J Biomed Opt 18(4):046012. Scholar
  16. 16.
    Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci 104(49):19494–19499. Scholar
  17. 17.
    Sun Y, Phipps J, Elson DS, Stoy H, Tinling S, Meier J, Poirier B, Chuang FS, Farwell DG, Marcu L (2009) Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett 34(13):2081–2083Google Scholar
  18. 18.
    Shah AT, Demory Beckler M, Walsh AJ, Jones WP, Pohlmann PR, Skala MC (2014) Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma. PLoS One 9(3):e90746. Scholar
  19. 19.
    El Madani HA, Tancrede-Bohin E, Bensussan A, Colonna A, Dupuy A, Bagot M, Pena AM (2012) In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation. J Biomed Opt 17(2):026009. Scholar
  20. 20.
    Koehler MJ, Konig K, Elsner P, Buckle R, Kaatz M (2006) In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt Lett 31(19):2879–2881Google Scholar
  21. 21.
    Koehler MJ, Preller A, Kindler N, Elsner P, Konig K, Buckle R, Kaatz M (2009) Intrinsic, solar and sunbed-induced skin aging measured in vivo by multiphoton laser tomography and biophysical methods. Skin Res Technol 15(3):357–363. Scholar
  22. 22.
    Kaatz M, Sturm A, Elsner P, Konig K, Buckle R, Koehler MJ (2010) Depth-resolved measurement of the dermal matrix composition by multiphoton laser tomography. Skin Res Technol 16(2):131–136. Scholar
  23. 23.
    Dimitrow E, Ziemer M, Koehler MJ, Norgauer J, Konig K, Elsner P, Kaatz M (2009) Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol 129(7):1752–1758. Scholar
  24. 24.
    Paoli J, Smedh M, Ericson MB (2009) Multiphoton laser scanning microscopy—a novel diagnostic method for superficial skin cancers. Semin Cutan Med Surg 28(3):190–195. Scholar
  25. 25.
    Paoli J, Smedh M, Wennberg AM, Ericson MB (2008) Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J Invest Dermatol 128(5):1248–1255. Scholar
  26. 26.
    Pastore MN, Studier H, Bonder CS, Roberts MS (2016) Non-invasive metabolic imaging of melanoma progression. Exp Dermatol.
  27. 27.
    Konig K, Ehlers A, Stracke F, Riemann I (2006) In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol Physiol 19(2):78–88. Scholar
  28. 28.
    Cox G, Kable E (2006) Second-harmonic imaging of collagen. Methods Mol Biol 319:15–35. Scholar
  29. 29.
    Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald JG (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20(4):1436–1447Google Scholar
  30. 30.
    Sriram G, Bigliardi PL, Bigliardi-Qi M (2015) Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 94(11):483–512. Scholar
  31. 31.
    Chen C, Loe F, Blocki A, Peng Y, Raghunath M (2011) Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv Drug Deliv Rev 63(4–5):277–290. Scholar
  32. 32.
    Lareu RR, Subramhanya KH, Peng Y, Benny P, Chen C, Wang Z, Rajagopalan R, Raghunath M (2007) Collagen matrix deposition is dramatically enhanced in vitro when crowded with charged macromolecules: the biological relevance of the excluded volume effect. FEBS Lett 581(14):2709–2714. Scholar

Copyright information

© Springer Science+Business Media New York 2019

Authors and Affiliations

  • Gopu Sriram
    • 1
    Email author
  • Thankiah Sudhaharan
    • 2
    • 3
  • Graham D. Wright
    • 2
    • 3
  1. 1.Faculty of DentistryNational University of SingaporeSingaporeSingapore
  2. 2.Institute of Medical Biology, A*STARSingaporeSingapore
  3. 3.Skin Research Institute of Singapore, A*STARSingaporeSingapore

Personalised recommendations