Advertisement

pp 1-7 | Cite as

Step-by-Step Protocol for Superparamagnetic Nanoparticle-Based Plasma Membrane Isolation from Eukaryotic Cell

  • Deepak B. Thimiri Govinda RajEmail author
  • Niamat Ali Khan
  • Srisaran Venkatachalam
  • Dinh Toi Chu
Protocol
Part of the Methods in Molecular Biology book series

Abstract

Here, we elaborate our detailed protocol for synthesis, functionalization, and application of superparamagnetic nanoparticle (SPMNP) for plasma membrane and lysosome isolation. We used standard thermal decomposition-based synthesis of iron oxide (Fe3O4) core SPMNP 1.0. Using ligand addition methodology, we surface functionalized SPMNP 1.0 with phospholipids and generated phospholipid-SPMNP 2.0. Further we used NH2-phospholipid-SPMNP 2.0 to isolate plasma membrane. Using our SPMNP subcellular fractionation protocol, we are able to isolate high-pure-high-yield plasma membrane using NH2-phospholipid-SPMNP 2.0. As a future perspective, we propose to use SPMNP on clinical patient samples and perform mass spectrometry-based proteomics, lipidomics, and glycomics for early cancer diagnosis.

Keywords

Superparamagnetic nanoparticles Phospholipids Plasma membrane and pulse-chase 

Notes

Acknowledgments

This work was supported by Envirotransgene® Global. Authors thank the infrastructural support from Bannari Amman Institute of Technology, India.

References

  1. 1.
    Thimiri Govinda Raj DB et al (2011) A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes. Mol Syst Biol 7:541Google Scholar
  2. 2.
    Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205Google Scholar
  3. 3.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in 39 phospholipid micelles. Science 298(5599):1759–1762Google Scholar
  4. 4.
    Raj DBTG (2011) Superparamagnetic nanoparticle based (10 nm) isolation of plasma membrane for high resolution mass spec. analysis of the proteome, lipidome and glycome. In: Semiconductor physics section. KU Leuven, LeuvenGoogle Scholar
  5. 5.
    Thimiri Govinda Raj DB, Khan NA (2018) Surface functionalization dependent subcellular localization of superparamagnetic nanoparticle in plasma membrane and endosome. Nanoconvergence 5:4Google Scholar
  6. 6.
    Thimiri Govinda Raj DB, Khan NA (2018) Synthesis of hybrid gold nanoparticles functionalized superparamagnetic nanoparticles. Micro-Nano Lett 13(3):292.  https://doi.org/10.1049/mnl.2017.0574CrossRefGoogle Scholar
  7. 7.
    Thimiri Govinda Raj DB, Khan NA (2018) Protocol for eukaryotic plasma membrane isolation using superparamagnetic nanoparticles. J Magn Magn Mater 476:628–631.  https://doi.org/10.1016/j.jmmm.2017.12.070Google Scholar
  8. 8.
    Thimiri Govinda Raj DB, Khan NA (2017) Designer nanoparticle: nano-biotechnology tool for cell biology. Nano Convergence 3(1):22Google Scholar

Copyright information

© Springer Science+Business Media New York 2019

Authors and Affiliations

  • Deepak B. Thimiri Govinda Raj
    • 1
    Email author
  • Niamat Ali Khan
    • 2
  • Srisaran Venkatachalam
    • 3
  • Dinh Toi Chu
    • 4
    • 5
    • 6
  1. 1.Envirotransgene® Bio-solutions Global Chennai India and Institute of Cancer ResearchOslo University HospitalOsloNorway
  2. 2.Laboratory of Lipid Metabolism and CancerLouvainBelgium
  3. 3.Bannari Amman Institute of TechnologySathyamangalamIndia
  4. 4.Faculty of BiologyHanoi National University of EducationHanoiVietnam
  5. 5.Institute for Research and DevelopmentDuy Tan UniversityDanangVietnam
  6. 6.School of Odonto StomatologyHanoi Medical UniversityHanoiVietnam

Personalised recommendations