In Vivo Genetic Alteration and Lineage Tracing of Single Stem Cells by Live Imaging

  • Olivia Farrelly
  • Paola Kuri
  • Panteleimon RompolasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1879)


Studies characterizing stem cell lineages in different organs aim to understand which cells particular progenitors can give rise to and how this process is controlled. Because the skin contains several resident stem cell populations and undergoes constant turnover, it is an ideal tissue in which to study this phenomenon. Furthermore, with the advent of two-photon microscopy techniques in combination with genetic tools for cell labeling, this question can be studied non-invasively by using live imaging. In this chapter, we describe an experimental approach that takes this technique one step further. We combine the Cre and Tet inducible genetic systems for single clone labeling and genetic manipulation in a specific stem cell population in the skin by using known drivers. Our system involves the use of gain- and loss-of-function alleles activated only in a differentially labeled population to distinguish single clones. The same region within a tissue is imaged repeatedly to document the fate and interactions of single clones with and without genetic modifications in the long term. Implementing this lineage tracing approach while documenting changes in cell behavior brought about by the genetic alterations allows both aspects to be linked. Because of the inherent flexibility of the approach, we expect it to have broad applications in studying stem cell function not only in the skin, but also in other tissues amenable to live imaging.


Clonal dynamics Inducible genetic mouse tools Lineage tracing Live imaging Skin Stem cells Two-photon laser scanning fluorescent microscopy 


  1. 1.
    Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148:33–45. Scholar
  2. 2.
    Blanpain C, Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14:489–502. Scholar
  3. 3.
    Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217. Scholar
  4. 4.
    Hsu Y-C, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20:847–856. Scholar
  5. 5.
    Alcolea MP, Jones PH (2014) Lineage analysis of epidermal stem cells. Cold Spring Harb Perspect Med 4:a015206. Scholar
  6. 6.
    Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188. Scholar
  7. 7.
    Crosetto N, Bienko M, van Oudenaarden A (2015) Spatially resolved transcriptomics and beyond. Nat Rev Genet 16:57–66. Scholar
  8. 8.
    Rompolas P, Mesa KR, Greco V (2013) Spatial organization within a niche as a determinant of stem-cell fate. Nature 502:513–518. Scholar
  9. 9.
    Rompolas P, Mesa KR, Kawaguchi K, Park S, Gonzalez D, Brown S, Boucher J, Klein AM, Greco V (2016) Spatiotemporal coordination of stem cell commitment during epidermal homeostasis. Science 352:1471–1474. Scholar
  10. 10.
    Pineda CM, Park S, Mesa KR, Wolfel M, Gonzalez DG, Haberman AM, Rompolas P, Greco V (2015) Intravital imaging of hair follicle regeneration in the mouse. Nat Protoc 10:1116–1130. Scholar
  11. 11.
    Huang S, Rompolas P (2017) Two-photon microscopy for intracutaneous imaging of stem cell activity in mice. Exp Dermatol 26:379–383. Scholar
  12. 12.
    Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170CrossRefGoogle Scholar
  13. 13.
    Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995CrossRefGoogle Scholar
  14. 14.
    Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551CrossRefGoogle Scholar
  15. 15.
    Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769CrossRefGoogle Scholar
  16. 16.
    Pan W, Jin Y, Stanger B, Kiernan AE (2010) Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci 107:15798–15803. Scholar
  17. 17.
    Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD (2011) Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144:782–795. Scholar
  18. 18.
    Grachtchouk M, Pero J, Yang SH, Ermilov AN, Michael LE, Wang A, Wilbert D, Patel RM, Ferris J, Diener J, Allen M, Lim S, Syu L-J, Verhaegen M, Dlugosz AA (2011) Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J Clin Invest 121:1768–1781. Scholar
  19. 19.
    Wang L, Sharma K, Deng H-X, Siddique T, Grisotti G, Liu E, Roos RP (2008) Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology. Neurobiol Dis 29:400–408. Scholar
  20. 20.
    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605. Scholar
  21. 21.
    Tumbar T (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363. Scholar
  22. 22.
    Vasioukhin V, Degenstein L, Wise B, Fuchs E (1999) The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A 96:8551–8556CrossRefGoogle Scholar
  23. 23.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007. Scholar
  24. 24.
    Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgård R, Clevers H (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:1385–1389. Scholar
  25. 25.
    Günschmann C, Chiticariu E, Garg B, Hiz MM, Mostmans Y, Wehner M, Scharfenberger L (2014) Transgenic mouse technology in skin biology: inducible gene knockout in mice. J Investig Dermatol 134:1–4. Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  • Olivia Farrelly
    • 1
  • Paola Kuri
    • 1
  • Panteleimon Rompolas
    • 1
    Email author
  1. 1.Department of Dermatology, Institute for Regenerative MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations