Immunofluorescence Staining Protocols for Major Autophagy Proteins Including LC3, P62, and ULK1 in Mammalian Cells in Response to Normoxia and Hypoxia

  • Wen Li
  • Shupeng Li
  • Yifang Li
  • Xiaoying Lin
  • Yongquan Hu
  • Tian Meng
  • Baojin Wu
  • Rongrong He
  • Du Feng
Part of the Methods in Molecular Biology book series (MIMB, volume 1854)


Immunofluorescence is an invaluable technique widely used in cell biology. This technique allows visualization of the subcellular distribution of different target proteins or organelles, by specific recognition of the antibody to the endogenous protein itself or to its antigen via the epitope. This technique can be used on tissue sections, cultured cells, or individual cells. Meanwhile, immunofluorescence can also be used in combination with non-antibody fluorescent staining, such as DAPI or fluorescent fusion proteins, e.g., GFP or YFP, etc.

Autophagy is a catabolic pathway in which dysfunctional organelles and cellular components are degraded via lysosomes. During this process, cytoplasmic LC3 translocates to autophagosomal membranes. Therefore, cells undergoing autophagy can be identified by visualizing fluorescently labeled LC3 or other autophagy markers. Immunofluorescence is an important part of autophagy detection methods even if observation of the formation of autophagosome by transmission electron microscopy has become a gold standard for characterizing autophagy.

By observing the immunofluorescence staining of some key autophagy proteins, we can intuitively evaluate the levels of autophagy in samples. Herein, this protocol describes the predominant method used for the research of autophagy, which mainly focuses on the immunofluorescence staining of cellular LC3, P62, and ULK1 in response to normoxia and hypoxia, by presenting the detailed materials required and methodology.


Autophagy Immunofluorescence LC3 Mitophagy P62 ULK1 



This work was supported by NSFC (No. 317781531, No. 91754115), by the Science and Technology Planning Project, Guangdong, China (No. 2017B090901051, No. 2016A020215152), by Research Fund of Guangzhou Medical University (B17017001006), and by Research Fund of Guangdong Medical University (M2014024, M2015001).


  1. 1.
    Orhon I, Reggiori F (2017) Assays to monitor autophagy progression in cell cultures. Cell 6(3). pii: E20).
  2. 2.
    Call JA, Wilson RJ, Laker RC, Zhang M, Kundu M, Yan Z (2017) Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. Am J Physiol Cell Physiol 312:C724–C732CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A, Baldini N (2016) The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev 12:621–633CrossRefPubMedGoogle Scholar
  4. 4.
    Dower CM, Bhat N, Wang EW, Wang HG (2017) Selective reversible inhibition of autophagy in hypoxic breast cancer cells promotes pulmonary metastasis. Cancer Res 77:646–657CrossRefPubMedGoogle Scholar
  5. 5.
    Guo JY, White E (2016) Autophagy, metabolism, and cancer. Cold Spring Harb Symp Quant Biol 81:73–78Google Scholar
  6. 6.
    Lei Y, Zhang D, Yu J, Dong H, Zhang J, Yang S (2017) Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett 393:33–39CrossRefPubMedGoogle Scholar
  7. 7.
    Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Fullgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034CrossRefPubMedGoogle Scholar
  8. 8.
    Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and microglia: novel partners in neurodegeneration and aging. Int J Mol Sci 18. pii: E598.
  9. 9.
    Suh HW, Kim JK, Kim TS, Jo EK (2017) New insights into vitamin D and autophagy in inflammatory bowel diseases. Curr Med Chem 24(9):898–910Google Scholar
  10. 10.
    Zhong Z, Sanchez-Lopez E, Karin M (2016) Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol 34:12–16PubMedGoogle Scholar
  11. 11.
    Polus A, Bociaga-Jasik M, Czech U, Goralska J, Cialowicz U, Chojnacka M, Polus M, Jurowski K, Dembinska-Kiec A (2017) The human immunodeficiency virus (HIV1) protease inhibitor sanquinavir activates autophagy and removes lipids deposited in lipid droplets. J Physiol Pharmacol 68:283–293PubMedGoogle Scholar
  12. 12.
    Feizi N, Mehrbod P, Romani B, Soleimanjahi H, Bamdad T, Feizi A, Jazaeri EO, Targhi HS, Saleh M, Jamali A, Fotouhi F, Nargesabad RN, Abdoli A (2017) Autophagy induction regulates influenza virus replication in a time-dependent manner. J Med Microbiol 66:536–541CrossRefPubMedGoogle Scholar
  13. 13.
    Tian W, Li W, Chen Y, Yan Z, Huang X, Zhuang H, Zhong W, Chen Y, Wu W, Lin C, Chen H, Hou X, Zhang L, Sui S, Zhao B, Hu Z, Li L, Feng D (2015) Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett 589:1847–1854CrossRefPubMedGoogle Scholar
  14. 14.
    Dunlop EA, Tee AR (2013) The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochem Soc Trans 41:939–943CrossRefPubMedGoogle Scholar
  15. 15.
    Kim J, Guan KL (2011) Regulation of the autophagy initiating kinase ULK1 by nutrients: roles of mTORC1 and AMPK. Cell Cycle 10:1337–1338CrossRefPubMedGoogle Scholar
  16. 16.
    Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Park JM, Jung CH, Seo M, Otto NM, Grunwald D, Kim KH, Moriarity B, Kim YM, Starker C, Nho RS, Voytas D, Kim DH (2016) The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12:547–564CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, Wang Z (2013) Interaction domains of p62: a bridge between p62 and selective autophagy. DNA Cell Biol 32:220–227CrossRefPubMedGoogle Scholar
  19. 19.
    Schimmack G, Schorpp K, Kutzner K, Gehring T, Brenke JK, Hadian K, Krappmann D (2017) YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-kappaB. Elife 6. pii: e22416.
  20. 20.
    Yang S, Qiang L, Sample A, Shah P, He YY (2017) NF-kappaB signaling activation induced by chloroquine requires autophagosome, p62 protein, and c-Jun N-terminal kinase (JNK) Signaling and promotes tumor cell resistance. J Biol Chem 292:3379–3388CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang BF, Cao PP, Wang ZC, Li ZY, Wang ZZ, Ma J, Liao B, Deng YK, Long XB, Xu K, Wang H, Wang H, Zeng M, Lu X, Liu Z (2017) Interferon-gamma-induced insufficient autophagy contributes to p62-dependent apoptosis of epithelial cells in chronic rhinosinusitis with nasal polyps. Allergy 72(9):1384–1397CrossRefPubMedGoogle Scholar
  22. 22.
    Xiao B, Deng X, Lim GGY, Zhou W, Saw WT, Zhou ZD, Lim KL, Tan EK (2017) p62-mediated mitochondrial clustering attenuates apoptosis induced by mitochondrial depolarization. Biochim Biophys Acta 1864:1308–1317CrossRefPubMedGoogle Scholar
  23. 23.
    Ito S, Kimura S, Warabi E, Kawachi Y, Yamatoji M, Uchida F, Ishibashi-Kanno N, Yamagata K, Hasegawa S, Shoda J, Tabuchi K, Sakai S, Bukawa H, Sekido M, Yanagawa T (2017) Corrigendum to “p62 modulates the intrinsic signaling of UVB-induced apoptosis” [Journal of Dermatological Science 83 (2016) 226-233]. J Dermatol Sci 86:259–260CrossRefPubMedGoogle Scholar
  24. 24.
    Lam HC, Baglini CV, Lope AL, Parkhitko AA, Liu HJ, Alesi N, Malinowska IA, Ebrahimi-Fakhari D, Saffari A, Yu JJ, Pereira A, Khabibullin D, Ogorek B, Nijmeh J, Kavanagh T, Handen A, Chan SY, Asara JM, Oldham WM, Diaz-Meco MT, Moscat J, Sahin M, Priolo C, Henske EP (2017) p62/SQSTM1 cooperates with hyperactive mTORC1 to regulate glutathione production, maintain mitochondrial integrity, and promote tumorigenesis. Cancer Res 77:3255–3267CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Conway O, Kirkin V (2017) Love laughs at locksmiths: ubiquitylation of p62 unlocks its autophagy receptor potential. Cell Res 27:595–597CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Feng Y, Klionsky DJ (2017) Autophagy regulates DNA repair through SQSTM1/p62. Autophagy 13:995–996CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT (2011) p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 44:134–146CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee YK, Lee JA (2016) Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 49:424–430CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, Nag S, Bewersdorf J, Yamamoto A, Antonny B, Melia TJ (2014) Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol 16:415–424CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Metlagel Z, Otomo C, Ohashi K, Takaesu G, Otomo T (2014) Structural insights into E2-E3 interaction for LC3 lipidation. Autophagy 10:522–523CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Otomo C, Metlagel Z, Takaesu G, Otomo T (2013) Structure of the human ATG12–ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol 20:59–66CrossRefPubMedGoogle Scholar
  32. 32.
    Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A, Hansen M (2015) Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 57:55–68CrossRefPubMedGoogle Scholar
  33. 33.
    Levitzki A (1985) Reconstitution of membrane receptor systems. Biochim Biophys Acta 822:127–153CrossRefPubMedGoogle Scholar
  34. 34.
    Tanford C, Reynolds JA (1976) Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta 457:133–170CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  • Wen Li
    • 1
    • 2
  • Shupeng Li
    • 3
  • Yifang Li
    • 2
  • Xiaoying Lin
    • 3
  • Yongquan Hu
    • 1
  • Tian Meng
    • 1
  • Baojin Wu
    • 4
  • Rongrong He
    • 2
  • Du Feng
    • 1
  1. 1.Key Laboratory of Protein Modification and Degradation, School of Basic Medical SciencesAffiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Anti-Stress and Health Research Center, College of PharmacyJinan UniversityGuangzhouPeople’s Republic of China
  3. 3.Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac-Cerebral Vascular DiseaseAffiliated Hospital of Guangdong Medical CollegeZhanjiangPeople’s Republic of China
  4. 4.Guangdong Landau Biotechnology Limited CompanyGuangzhouPeople’s Republic of China

Personalised recommendations