In-Lab Manufacturing of Decellularized Rat Renal Scaffold for Kidney Bioengineering

  • Andrea PelosoEmail author
  • Antonio Citro
  • Valeria Corradetti
  • Szandra Brambilla
  • Graziano Oldani
  • Francesco Calabrese
  • Tommaso Dominioni
  • Marcello Maestri
  • Lorenzo Cobianchi
Part of the Methods in Molecular Biology book series (MIMB, volume 1577)


Whole-organ decellularization is recently gaining interest in the transplantation field as strategy to obtain acellular scaffold only composed by extracellular matrix. These structures, that still remain organ-specific in terms of biological cues and tridimensional morphology could be then recellularized with patient's autologous cells. The final result should be a nwe transplantable autologous organ that should by-pass, at the same time, the problem of organ shortage and secondly the consequences related to the immunosuppression need. Herein we describe the protocol to manufacture a whole-organ transplantable rat kidney scaffold by a dual-detergent (Triton X-100 and SDS) arterial peristaltic perfusion. Final results show whole-renal acellular scaffold with contextual preservation of tridimensional architecture and biological properties deriving from the extracellular matrix composition.


Extracellular matrix Kidney scaffold Kidney transplantation Organ bioengineering Rat model Regenerative medicine 



AP was supported by an Investigator Fellowship grant from Collegio Ghislieri, Pavia, Italy.


  1. 1.
    World Health Organization (2013) World Health Statistic. World Health Organization, Geneve, SwitzerlandGoogle Scholar
  2. 2.
    Beuscart JB, Pagniez D, Boulanger E, Duhamel A (2015) Registration on the renal transplantation waiting list and mortality on dialysis: an analysis of the French REIN registry using a multi-state model. J Epidemiol 25:133–141CrossRefGoogle Scholar
  3. 3.
    Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao MH, Lv J, Garg AX, Knight J, Rodgers A, Gallagher M, Kotwal S, Cass A, Perkovic V (2015) Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385:1975–1982CrossRefGoogle Scholar
  4. 4.
    Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243CrossRefGoogle Scholar
  5. 5.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233CrossRefGoogle Scholar
  6. 6.
    Gilbert TW, Wognum S, Joyce EM, Freytes DO, Sacks MS, Badylak SF (2008) Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 29:4775–4782CrossRefGoogle Scholar
  7. 7.
    Xu CC, Chan RW, Tirunagari N (2007) A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria. Tissue Eng 13:551–566CrossRefGoogle Scholar
  8. 8.
    Dong X, Wei X, Yi W, Gu C, Kang X, Liu Y, Li Q, Yi D (2009) RGD-modified acellular bovine pericardium in a bioprosthetic scaffold for tissue engineering. J Mater Sci Mater Med 20:2327–2336CrossRefGoogle Scholar
  9. 9.
    Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE (2010) Tissue-engineered lungs for in vivo implantation. Science 329:538–541CrossRefGoogle Scholar
  10. 10.
    Lehr EJ, Rayat GR, Chiu B, Churchill T, McGann LE, Coe JY, Ross DB (2010) Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J Thorac Cardiovasc Surg 141:1056–1062CrossRefGoogle Scholar
  11. 11.
    Dahl SL, Koh J, Prabhakar V, Niklason LE (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 12:659–666CrossRefGoogle Scholar
  12. 12.
    Bolland F, Korossis S, Wilshaw SP, Ingham E, Fisher J, Kearney JN, Southgate J (2007) Development and characterization of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 28:1061–1070CrossRefGoogle Scholar
  13. 13.
    Henderson PW, Nagineni VV, Harper A, Bavinck N, Sohn AM, Krijgh DD, Jimenez N, Weinstein AL, Spector JA (2010) Development of an acellular bioengineered matrix with a dominant vascular pedicle. J Surg Res 164:1–5CrossRefGoogle Scholar
  14. 14.
    Shupe T, Williams M, Brown A, Willenberg B, Petersen BE (2010) Method for the decellularization of intact rat liver. Organogenesis 6:134–136CrossRefGoogle Scholar
  15. 15.
    Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, Huelsmann J, Preuss K, Lichtenberg A (2011) The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods 17:915–926CrossRefGoogle Scholar
  16. 16.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221CrossRefGoogle Scholar
  17. 17.
    Peloso A, Ferrario J, Maiga B, Benzoni I, Bianco C, Citro A, Currao M, Malara A, Gaspari A, Balduini A, Abelli M, Piemonti L, Dionigi P, Orlando G, Maestri M (2015) Creation and implantation of acellular rat renal ECM based scaffolds. Organogenesis 11:58–74CrossRefGoogle Scholar
  18. 18.
    Chen MK, Badylak SF (2001) Small bowel tissue engineering using small intestinal submucosa as a scaffold. J Surg Res 99:352–358CrossRefGoogle Scholar
  19. 19.
    Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, Balasubramani M, Johnson SA, Sicari BM, Kollar E, Badylak SF, Banerjee I (2013) Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 34:6760–6772CrossRefGoogle Scholar
  20. 20.
    Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Fallas ME, Sordi V, Citro A, Purroy C, Niu G, McQuilling JP, Sittadjody S, Farney AC, Iskandar SS, Zambon JP, Rogers J, Stratta RJ, Opara EC, Piemonti L, Furdui CM, Soker S, De Coppi P, Orlando G (2016) The human pancreas as a source of protolerogenic extracellular matrix scaffold for a new-generation bioartificial endocrine pancreas. Ann Surg 264:169–179CrossRefGoogle Scholar
  21. 21.
    Peloso A, Petrosyan A, Da Sacco S, Booth C, Zambon JP, O'Brien T, Aardema C, Robertson J, De Filippo RE, Soker S, Stratta RJ, Perin L, Orlando G (2015) Renal extracellular matrix scaffolds from discarded kidneys maintain glomerular morphometry and vascular resilience and retains critical growth factors. Transplantation 99:1807–1816CrossRefGoogle Scholar
  22. 22.
    Mazza G, Rombouts K, Rennie Hall A, Urbani L, Vinh Luong T, Al-Akkad W, Longato L, Brown D, Maghsoudlou P, Dhillon AP, Fuller B, Davidson B, Moore K, Dhar D, De Coppi P, Malago M, Pinzani M (2015) Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 5:13079CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andrea Peloso
    • 1
    • 2
    • 3
    Email author
  • Antonio Citro
    • 4
  • Valeria Corradetti
    • 5
  • Szandra Brambilla
    • 6
  • Graziano Oldani
    • 3
  • Francesco Calabrese
    • 2
  • Tommaso Dominioni
    • 2
  • Marcello Maestri
    • 2
  • Lorenzo Cobianchi
    • 1
    • 2
  1. 1.Department of Clinical, Surgical, Diagnostic and Paediatric SciencesUniversity of PaviaPaviaItaly
  2. 2.Department of General SurgeryIRCCS Policlinico San MatteoPaviaItaly
  3. 3.Divisions of Abdominal and Transplantation Surgery, Hepato-Pancreato-Biliary Centre, Department of Surgery, Faculty of MedicineUniversity Hospital of Geneva, University of GenevaGenevaSwitzerland
  4. 4.San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific InstituteMilanItaly
  5. 5.IRCCS Policlinico San Matteo, Unit of Nephrology, Dialysis and TransplantationPaviaItaly
  6. 6.University of PaviaPaviaItaly

Personalised recommendations