Advertisement

MALDI Imaging Mass Spectrometry of N-glycans and Tryptic Peptides from the Same Formalin-Fixed, Paraffin-Embedded Tissue Section

  • Peggi M. AngelEmail author
  • Anand Mehta
  • Kim Norris-Caneda
  • Richard R. Drake
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1788)

Abstract

Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a unique and well developed tool for probing the protein content of formalin-fixed, paraffin-embedded tissue (FFPE). Integral to this approach is the application of trypsin, and more recently peptide N-glycosidase F, to release tryptic peptides or N-glycans from tissue and report localization of distinct species. This is typically done on serial or adjacent tissue sections, and there is an emerging need to understand the colocalized protein population linked to the exact same regions of N-glycans. Here we describe an approach where N-glycans are first imaged from a tissue section followed by reprocessing of the same tissue section for tryptic peptide MALDI IMS. Strategies for colocalizing peptides to target N-glycans or N-glycan regions are described.

Keywords:

Formalin-fixed Imaging mass spectrometry MALDI imaging mass spectrometry Paraffin-embedded tissue imaging Peptide identification for imaging mass spectrometry Peptide N-glycosidase F Proteomics Tryptic peptide imaging 

Notes

Acknowledgments

This work was supported by the National Institute of Health/National Cancer Institute R21 CA185799 to RRD. PMA appreciates support from the National Institutions of Health through the National Institute of General Medical Sciences P20GM103542.

References

  1. 1.
    Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113(4):2309–2342CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aichler M, Walch A (2015) MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Investig 95(4):422–431. 25621874CrossRefPubMedGoogle Scholar
  3. 3.
    Schwamborn K, Kriegsmann M, Weichert W (2017) MALDI imaging mass spectrometry—from bench to bedside. Biochim Biophys Acta 1865(7):776–783. 27810414CrossRefPubMedGoogle Scholar
  4. 4.
    Groseclose MR, Andersson M, Hardesty WM, Caprioli RM (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom 42(2):254–262CrossRefPubMedGoogle Scholar
  5. 5.
    Heijs B, Carreira RJ, Tolner EA, de Ru AH, van den Maagdenberg AMJM, van Veelen PA, McDonnell LA (2015) Comprehensive analysis of the mouse brain proteome sampled in mass spectrometry imaging. Anal Chem 87(3):1867–1875CrossRefPubMedGoogle Scholar
  6. 6.
    Powers TW, Jones EE, Betesh LR, Romano PR, Gao P, Copland JA, Mehta AS, Drake RR (2013) Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal Chem 85(20):9799–9806CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6(11):1695–1709CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Briggs MT, Kuliwaba JS, Muratovic D, Everest-Dass AV, Packer NH, Findlay DM, Hoffmann P (2016) MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis. Proteomics 16(11–12):1736–1741CrossRefPubMedGoogle Scholar
  9. 9.
    Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM (2017) MALDI mass spectrometry imaging of N-linked glycans in cancer tissues. Adv Cancer Res 134:85–116CrossRefPubMedGoogle Scholar
  10. 10.
    Angel PM, Baldwin HS, Gottlieb D, Su YR, Mayer JE, Bichell D, Drake RR (2017) Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. Biochim Biophys Acta 1865(7):927–935. PMC5527275CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Turiák L, Shao C, Meng L, Khatri K, Leymarie N, Wang Q, Pantazopoulos H, Leon DR, Zaia J (2014) Workflow for combined proteomics and glycomics profiling from histological tissues. Anal Chem 86(19):9670–9678. PMC4427244CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Heijs B, Holst S, Briaire-de Bruijn IH, van Pelt GW, de Ru AH, van Veelen PA, Drake RR, Mehta AS, Mesker WE, Tollenaar RA (2016) Multimodal mass spectrometry imaging of N-glycans and proteins from the same tissue section. Anal Chem 88(15):7745–7753. 27373711CrossRefPubMedGoogle Scholar
  13. 13.
    Powers TW, Neely BA, Shao Y, Tang H, Troyer DA, Mehta AS, Haab BB, Drake RR (2014) MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One 9(9):1–11. e106255CrossRefGoogle Scholar
  14. 14.
    Powers TW, Holst S, Wuhrer M, Mehta AS, Drake RR (2015) Two-dimensional N-glycan distribution mapping of hepatocellular carcinoma tissues by MALDI-imaging mass spectrometry. Biomol Ther 5(4):2554–2572Google Scholar
  15. 15.
    Holst S, Heijs B, de Haan N, van Zeijl RJM, Briaire-de Bruijn IH, van Pelt GW, Mehta AS, Angel PM, Mesker WE, Tollenaar RAEM (2016) Linkage-specific in-situ sialic acid derivatization for N-glycan mass spectrometry imaging of FFPE tissues. Anal Chem 88(11):5904–5913CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York  2017

Authors and Affiliations

  • Peggi M. Angel
    • 1
    Email author
  • Anand Mehta
    • 1
  • Kim Norris-Caneda
    • 1
  • Richard R. Drake
    • 1
  1. 1.Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations