Measurement of Lysophosphatidic Acid and Sphingosine-1-Phosphate by Liquid Chromatography-Coupled Electrospray Ionization Tandem Mass Spectrometry

  • Maria P. Kraemer
  • Suchismita Halder
  • Susan S. Smyth
  • Andrew J. Morris
Part of the Methods in Molecular Biology book series (MIMB, volume 1697)


Lysophosphatidic acids and sphingosine-1-phosphate are bioactive lipids that regulate diverse cellular and physiological processes through actions that are largely mediated by cell surface receptors. The roles played by these lipids in multiple disease processes make the enzymes and receptors involved in their synthesis, inactivation, and signaling attractive targets for pharmacological therapies. In this chapter we describe methods for sensitive accurate quantitation of LPA and S1P levels in biological fluids using liquid chromatography-coupled electrospray ionization tandem mass spectrometry.


Liquid chromatography Lysophospholipids Mass spectrometry 


  1. 1.
    Abdel-Latif A, Heron PM, Morris AJ, Smyth SS (2015) Lysophospholipids in coronary artery and chronic ischemic heart disease. Curr Opin Lipidol 26(5):432–437. doi: 10.1097/mol.0000000000000226 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Binder BY, Williams PA, Silva EA, Leach JK (2015) Lysophosphatidic acid and Sphingosine-1-phosphate: a concise review of biological function and applications for tissue engineering. Tissue Eng Part B Rev 21(6):531–542. doi: 10.1089/ten.TEB.2015.0107 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sheng X, Yung YC, Chen A, Chun J (2015) Lysophosphatidic acid signalling in development. Development 142(8):1390–1395. doi: 10.1242/dev.121723 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yung YC, Stoddard NC, Mirendil H, Chun J (2015) Lysophosphatidic acid signaling in the nervous system. Neuron 85(4):669–682. doi: 10.1016/j.neuron.2015.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aikawa S, Hashimoto T, Kano K, Aoki J (2015) Lysophosphatidic acid as a lipid mediator with multiple biological actions. J Biochem 157(2):81–89. doi: 10.1093/jb/mvu077 CrossRefPubMedGoogle Scholar
  6. 6.
    Chew WS, Wang W, Herr DR (2016) To fingolimod and beyond: the rich pipeline of drug candidates that target S1P signaling. Pharmacol Res 113(Pt A):521–532. doi: 10.1016/j.phrs.2016.09.025 CrossRefPubMedGoogle Scholar
  7. 7.
    Pyne S, Adams DR, Pyne NJ (2016) Sphingosine 1-phosphate and sphingosine kinases in health and disease: recent advances. Prog Lipid Res 62:93–106. doi: 10.1016/j.plipres.2016.03.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Pyne NJ, Pyne S (2017) Sphingosine 1-phosphate receptor 1 signaling in mammalian cells. Molecules (Basel, Switzerland) 22(3). doi: 10.3390/molecules22030344
  9. 9.
    Morris AJ, Selim S, Salous A, Smyth SS (2009) Blood relatives: dynamic regulation of bioactive lysophosphatidic acid and sphingosine-1-phosphate metabolism in the circulation. Trends Cardiovasc Med 19(4):135–140. doi: 10.1016/j.tcm.2009.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Aoki J, Inoue A, Okudaira S (2008) Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 1781(9):513–518. doi: 10.1016/j.bbalip.2008.06.005 CrossRefPubMedGoogle Scholar
  11. 11.
    Nakanaga K, Hama K, Aoki J (2010) Autotaxin—an LPA producing enzyme with diverse functions. J Biochem 148(1):13–24. doi: 10.1093/jb/mvq052 CrossRefPubMedGoogle Scholar
  12. 12.
    Proia RL, Hla T (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 125(4):1379–1387. doi: 10.1172/jci76369 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kihara Y, Mizuno H, Chun J (2015) Lysophospholipid receptors in drug discovery. Exp Cell Res 333(2):171–177. doi: 10.1016/j.yexcr.2014.11.020 CrossRefPubMedGoogle Scholar
  14. 14.
    Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi GJ (2001) Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal Biochem 292(2):287–295. doi: 10.1006/abio.2001.5063 CrossRefPubMedGoogle Scholar
  15. 15.
    Fulkerson Z, Wu T, Sunkara M, Kooi CV, Morris AJ, Smyth SS (2011) Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. J Biol Chem 286(40):34654–34663. doi: 10.1074/jbc.M111.276725 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Salous AK, Panchatcharam M, Sunkara M, Mueller P, Dong A, Wang Y, Graf GA, Smyth SS, Morris AJ (2013) Mechanism of rapid elimination of lysophosphatidic acid and related lipids from the circulation of mice. J Lipid Res 54(10):2775–2784. doi: 10.1194/jlr.M039685 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Keune WJ, Potjewyd F, Heidebrecht T, Salgado-Polo F, Macdonald SJ, Chelvarajan L, Abdel Latif A, Soman S, Morris AJ, Watson AJ, Jamieson C, Perrakis A (2017) Rational design of autotaxin inhibitors by structural evolution of endogenous modulators. J Med Chem 60(5):2006–2017. doi: 10.1021/acs.jmedchem.6b01743 CrossRefPubMedGoogle Scholar
  18. 18.
    Georas SN, Berdyshev E, Hubbard W, Gorshkova IA, Usatyuk PV, Saatian B, Myers AC, Williams MA, Xiao HQ, Liu M, Natarajan V (2007) Lysophosphatidic acid is detectable in human bronchoalveolar lavage fluids at baseline and increased after segmental allergen challenge. Clin Exp Allergy 37(3):311–322. doi: 10.1111/j.1365-2222.2006.02626.x CrossRefPubMedGoogle Scholar
  19. 19.
    Ackerman SJ, Park GY, Christman JW, Nyenhuis S, Berdyshev E, Natarajan V (2016) Polyunsaturated lysophosphatidic acid as a potential asthma biomarker. Biomark Med 10(2):123–135. doi: 10.2217/bmm.15.93 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sonoda H, Aoki J, Hiramatsu T, Ishida M, Bandoh K, Nagai Y, Taguchi R, Inoue K, Arai H (2002) A novel phosphatidic acid-selective phospholipase A1 that produces lysophosphatidic acid. J Biol Chem 277(37):34254–34263. doi: 10.1074/jbc.M201659200 CrossRefPubMedGoogle Scholar
  21. 21.
    Kurano M, Suzuki A, Inoue A, Tokuhara Y, Kano K, Matsumoto H, Igarashi K, Ohkawa R, Nakamura K, Dohi T, Miyauchi K, Daida H, Tsukamoto K, Ikeda H, Aoki J, Yatomi Y (2015) Possible involvement of minor lysophospholipids in the increase in plasma lysophosphatidic acid in acute coronary syndrome. Arterioscler Thromb Vasc Biol 35(2):463–470. doi: 10.1161/atvbaha.114.304748 CrossRefPubMedGoogle Scholar
  22. 22.
    Le Stunff H, Giussani P, Maceyka M, Lepine S, Milstien S, Spiegel S (2007) Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem 282(47):34372–34380. doi: 10.1074/jbc.M703329200 CrossRefPubMedGoogle Scholar
  23. 23.
    Nagahashi M, Yamada A, Aoyagi T, Allegood J, Wakai T, Spiegel S, Takabe K (2016) Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods. Heliyon 2(12):e00219. doi: 10.1016/j.heliyon.2016.e00219 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nagahashi M, Yamada A, Miyazaki H, Allegood JC, Tsuchida J, Aoyagi T, Huang WC, Terracina KP, Adams BJ, Rashid OM, Milstien S, Wakai T, Spiegel S, Takabe K (2016) Interstitial fluid Sphingosine-1-phosphate in murine mammary gland and cancer and human breast tissue and cancer determined by novel methods. J Mammary Gland Biol Neoplasia 21(1-2):9–17. doi: 10.1007/s10911-016-9354-7 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liebisch G, Scherer M (2012) Quantification of bioactive sphingo- and glycerophospholipid species by electrospray ionization tandem mass spectrometry in blood. J Chromatogr B Analyt Technol Biomed Life Sci 883-884:141–146. doi: 10.1016/j.jchromb.2011.10.037 CrossRefPubMedGoogle Scholar
  26. 26.
    Onorato JM, Shipkova P, Minnich A, Aubry AF, Easter J, Tymiak A (2014) Challenges in accurate quantitation of lysophosphatidic acids in human biofluids. J Lipid Res 55(8):1784–1796. doi: 10.1194/jlr.D050070 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhao Z, Xu Y (2010) An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J Lipid Res 51(3):652–659. doi: 10.1194/jlr.D001503 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alshehry ZH, Barlow CK, Weir JM, Zhou Y, McConville MJ, Meikle PJ (2015) An efficient single phase method for the extraction of plasma lipids. Metabolites 5(2):389–403. doi: 10.3390/metabo5020389 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Maria P. Kraemer
    • 1
  • Suchismita Halder
    • 1
  • Susan S. Smyth
    • 1
  • Andrew J. Morris
    • 1
  1. 1.Gill Heart and Vascular Institute, University of Kentucky College of Medicine, Lexington Veterans Affairs Medical CenterLexingtonUSA

Personalised recommendations