Alveolar Rhabdomyosarcoma Decellularization

  • Michela Pozzobon
  • Mattia Saggioro
  • Stefania D’Agostino
  • Gianni Bisogno
  • Maurizio Muraca
  • Piergiorgio Gamba
Part of the Methods in Molecular Biology book series (MIMB, volume 1577)


In cancer research, it is an urgent need in the obtainment of a simple and reproducible model that mimics in all the complexity the pathological microenvironment. Specifically, the will to improve the overall survival of young patients affected by rhabdomyosarcoma compels researchers to develop new models resembling the multifaceted environment of the pathology to deeply study the disease under novel and different aspects. To this end, we developed a decellularization protocol for alveolar rhabdomyosarcoma (ARMS) able to maintain the three-dimensional structure. The attained extracellular matrix (ECM) can be used as 3D in vitro model suitable to both recapitulate the in vivo cancer microenvironment, and also for drug testing. Here, we first describe a detergent-enzymatic method and then we analyze the decellularization efficiency and the scaffold proteins.


Decellularization Extracellular matrix Rhabdomyosarcoma 3D in vitro model 



Saggioro M and D’Agostino S are supported by Istituto di Ricerca Pediatrica Città della Speranza. Pozzobon M is supported by University of Padova, Grant number GRIC15AIPF, Assegno di ricerca Senior. Pozzobon M is a coinventor of the Italian Patent N. 0001422436 entitled “Matrice acellulare per ricostruzione in vivo di muscolo scheletrico.”


  1. 1.
    Kashi VP, Hatley ME, Galindo RL (2015) Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model systems. Nat Rev Cancer 15:426–439. doi: 10.1038/nrc3961CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hettmer S, Li Z, Billin AN et al (2014) Rhabdomyosarcoma: current challenges and their implications for developing therapies. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect.a025650CrossRefGoogle Scholar
  3. 3.
    Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253. doi: 10.15252/embr.201439246CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Harisi R, Jeney A (2015) Extracellular matrix as target for antitumor therapy. Onco Targets Ther 8:1387–1398. doi: 10.2147/OTT.S48883CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lambert AW, Pattabiraman DR, Weinberg RA (2016) Review emerging biological principles of metastasis. Cell 168:670–691. doi: 10.1016/j.cell.2016.11.037CrossRefGoogle Scholar
  6. 6.
    Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15:771–785. doi: 10.1038/nrm3902CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Onisto M, Slongo ML, Gregnanin L et al (2005) Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines. Int J Oncol 27:791–798PubMedGoogle Scholar
  8. 8.
    Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54. doi: 10.1038/35094059CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597. doi: 10.1016/j.cell.2016.05.082CrossRefPubMedGoogle Scholar
  10. 10.
    Nath S, Devi GR (2016) Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther 163:94–108. doi: 10.1016/j.pharmthera.2016.03.013CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683. doi: 10.1016/j.biomaterials.2006.02.014CrossRefGoogle Scholar
  12. 12.
    Chen HJ, Wei Z, Sun J et al (2016) A recellularized human colon model identifies cancer driver genes. Nat Biotechnol 34(8):845–851. doi: 10.1038/nbt.3586CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243. doi: 10.1016/j.biomaterials.2011.01.057CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Piccoli M, Urbani L, Alvarez-Fallas ME et al (2016) Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch. Biomaterials 74:245–255. doi: 10.1016/j.biomaterials.2015.10.005CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Michela Pozzobon
    • 1
    • 2
    • 3
  • Mattia Saggioro
    • 1
    • 2
  • Stefania D’Agostino
    • 2
  • Gianni Bisogno
    • 1
  • Maurizio Muraca
    • 1
  • Piergiorgio Gamba
    • 1
  1. 1.Department of Women’s and Children’s HealthUniversity of PadovaPadovaItaly
  2. 2.Fondazione Istituto di Ricerca Pediatrica Città della SperanzaPadovaItaly
  3. 3.Stem Cells and Regenerative Medicine LabIstituto di Ricerca Pediatrica Città della SperanzaPadovaItaly

Personalised recommendations