pp 1-19

Part of the Methods in Molecular Biology book series | Cite as

Ceramide and S1P Signaling in Embryonic Stem Cell Differentiation

  • Guanghu Wang
  • Stefka D. Spassieva
  • Erhard Bieberich
Protocol

Abstract

Bioactive sphingolipids are important regulators for stem cell survival and differentiation. Most recently, we have coined the term “morphogenetic lipids” for sphingolipids that regulate stem cells during embryonic and postnatal development. The sphingolipid ceramide and its derivative, sphingosine-1-phosphate (S1P), can act synergistically as well as antagonistically on embryonic stem (ES) cell differentiation. We show here simple as well as state-of-the-art methods to analyze sphingolipids in differentiating ES cells and discuss new protocols to use ceramide and S1P analogs for the guided differentiation of mouse ES cells toward neuronal and glial lineage.

Keywords:

Ceramide Sphingolipid Sphingosine-1-phosphate Neuroprogenitor Oligodendrocyte precursor Apoptosis Teratoma 

References

  1. 1.
    Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167(4):723–734CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yanai J, Doetchman T, Laufer N, Maslaton J, Mor-Yosef S, Safran A, Shani M, Sofer D (1995) Embryonic cultures but not embryos transplanted to the mouse’s brain grow rapidly without immunosuppression. Int J Neurosci 81(1–2):21–26CrossRefPubMedGoogle Scholar
  3. 3.
    Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 42(1):162–165CrossRefGoogle Scholar
  4. 4.
    Teramoto K, Hara Y, Kumashiro Y, Chinzei R, Tanaka Y, Shimizu-Saito K, Asahina K, Teraoka H, Arii S (2005) Teratoma formation and hepatocyte differentiation in mouse liver transplanted with mouse embryonic stem cell-derived embryoid bodies. Transplant Proc 37(1):285–286CrossRefPubMedGoogle Scholar
  5. 5.
    Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli AD, de Bruin JL, Fedoseyeva EV, Robbins RC (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112(9 Suppl):I166–I172PubMedGoogle Scholar
  6. 6.
    Sanchez-Pernaute R, Studer L, Ferrari D, Perrier A, Lee H, Vinuela A, Isacson O (2005) Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 23(7):914–922CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim D, Gu Y, Ishii M, Fujimiya M, Qi M, Nakamura N, Yoshikawa T, Sumi S, Inoue K (2003) In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas 27(2):e34–e41CrossRefPubMedGoogle Scholar
  8. 8.
    Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166(6):1781–1791CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fong SP, Tsang KS, Chan AB, Lu G, Poon WS, Li K, Baum LW, Ng HK (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 85(9):1851–1862CrossRefPubMedGoogle Scholar
  10. 10.
    Choi D, Oh HJ, Chang UJ, Koo SK, Jiang JX, Hwang SY, Lee JD, Yeoh GC, Shin HS, Lee JS, Oh B (2002) In vivo differentiation of mouse embryonic stem cells into hepatocytes. Cell Transplant 11(4):359–368PubMedGoogle Scholar
  11. 11.
    Bielby RC, Boccaccini AR, Polak JM, Buttery LD (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10(9–10):1518–1525CrossRefPubMedGoogle Scholar
  12. 12.
    Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45(12):4251–4255CrossRefPubMedGoogle Scholar
  13. 13.
    Baker M (2009) Stem cells: fast and furious. Nature 458(7241):962–965. doi:10.1038/458962a. 458962a [pii]CrossRefPubMedGoogle Scholar
  14. 14.
    Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS, Guetta E, Itskovitz-Eldor J (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93(10):1278–1284. doi:10.1136/hrt.2006.093161. hrt.2006.093161 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158. doi:10.1016/S0065-230X(08)00005-5. S0065-230X(08)00005-5 [pii]CrossRefPubMedGoogle Scholar
  16. 16.
    Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, Connolly AJ, Robbins RC, Wu JC (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8(16):2608–2612. 9353 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem. doi:10.1002/jcb.22775
  18. 18.
    Kuznetsov S, Cherman N, Gehron Robey P (2010) In vivo bone formation by progeny of human embryonic stem cells. Stem Cells Dev. doi:10.1089/scd.2009.0501
  19. 19.
    Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH (2010) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89(8):911–919. doi:10.1097/TP.0b013e3181d45a61 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bieberich E (2008) Smart drugs for smarter stem cells: making SENSe (sphingolipid-enhanced neural stem cells) of ceramide. Neurosignals 16(2–3):124–139. doi:10.1159/000111558. 000111558 [pii]CrossRefPubMedGoogle Scholar
  21. 21.
    Jeong HC, Cho SJ, Lee MO, Cha HJ (2017) Technical approaches to induce selective cell death of pluripotent stem cells. Cell Mol Life Sci. doi:10.1007/s00018-017-2486-0
  22. 22.
    Bieberich E (2008) Ceramide signaling in cancer and stem cells. Future Lipidol 3(3):273–300. doi:10.2217/17460875.3.3.273 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bieberich E, Hu B, Silva J, MacKinnon S, Yu RK, Fillmore H, Broaddus WC, Ottenbrite RM (2002) Synthesis and characterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett 181(1):55–64CrossRefPubMedGoogle Scholar
  24. 24.
    Bieberich E, Kawaguchi T, Yu RK (2000) N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem 275(1):177–181CrossRefPubMedGoogle Scholar
  25. 25.
    Wang G, Krishnamurthy K, Umapathy NS, Verin AD, Bieberich E (2009) The carboxyl-terminal domain of atypical protein kinase Czeta binds to ceramide and regulates junction formation in epithelial cells. J Biol Chem 284(21):14469–14475. doi:10.1074/jbc.M808909200. M808909200 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280(28):26415–26424CrossRefPubMedGoogle Scholar
  27. 27.
    Dutta D, Ray S, Home P, Larson M, Wolfe MW, Paul S (2011) Self renewal vs. lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance. Stem Cells. doi:10.1002/stem.605
  28. 28.
    He Q, Wang G, Wakade S, Dasgupta S, Dinkins M, Kong JN, Spassieva SD, Bieberich E (2014) Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide. Mol Biol Cell 25(11):1715–1729. doi:10.1091/mbc.E13-12-0730. mbc.E13-12-0730 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kong JN, Hardin K, Dinkins M, Wang G, He Q, Mujadzic T, Zhu G, Bielawski J, Spassieva S, Bieberich E (2015) Regulation of Chlamydomonas flagella and ependymal cell motile cilia by ceramide-mediated translocation of GSK3. Mol Biol Cell 26(24):4451–4465. doi:10.1091/mbc.E15-06-0371 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    He Q, Wang G, Dasgupta S, Dinkins M, Zhu G, Bieberich E (2012) Characterization of an apical ceramide-enriched compartment regulating ciliogenesis. Mol Biol Cell 23(16):3156–3166. doi:10.1091/mbc.E12-02-0079. mbc.E12-02-0079 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kleger A, Busch T, Liebau S, Prelle K, Paschke S, Beil M, Rolletschek A, Wobus A, Wolf E, Adler G, Seufferlein T (2007) The bioactive lipid sphingosylphosphorylcholine induces differentiation of mouse embryonic stem cells and human promyelocytic leukaemia cells. Cell Signal 19(2):367–377. doi:10.1016/j.cellsig.2006.07.015 CrossRefPubMedGoogle Scholar
  32. 32.
    Rodgers A, Mormeneo D, Long JS, Delgado A, Pyne NJ, Pyne S (2009) Sphingosine 1-phosphate regulation of extracellular signal-regulated kinase-1/2 in embryonic stem cells. Stem Cells Dev 18(9):1319–1330. doi:10.1089/scd.2009.0023 CrossRefPubMedGoogle Scholar
  33. 33.
    Pebay A, Wong RC, Pitson SM, Wolvetang EJ, Peh GS, Filipczyk A, Koh KL, Tellis I, Nguyen LT, Pera MF (2005) Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23(10):1541–1548. doi:10.1634/stemcells.2004-0338. 2004-0338 [pii]CrossRefPubMedGoogle Scholar
  34. 34.
    Wong RC, Pera MF, Pebay A (2012) Maintenance of human embryonic stem cells by sphingosine-1-phosphate and platelet-derived growth factor. Methods Mol Biol 874:167–175. doi:10.1007/978-1-61779-800-9_13 CrossRefPubMedGoogle Scholar
  35. 35.
    Callihan P, Alqinyah M, Hooks SB (2017) Sphingosine-1-phosphate (S1P) signaling in neural progenitors. Methods Mol Biol. doi:10.1007/7651_2017_3
  36. 36.
    Wong RC, Pera MF, Pebay A (2017) Maintenance of human embryonic stem cells by sphingosine-1-phosphate and platelet-derived growth factor. Methods Mol Biol. doi:10.1007/7651_2017_4
  37. 37.
    Bradley E, Bieberich E, Mivechi NF, Tangpisuthipongsa D, Wang G (2012) Regulation of embryonic stem cell pluripotency by heat shock protein 90. Stem Cells 30(8):1624–1633. doi:10.1002/stem.1143 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12(9):432–438CrossRefPubMedGoogle Scholar
  39. 39.
    Smith GS, Kumar A, Saba JD (2013) Sphingosine phosphate lyase regulates murine embryonic stem cell proliferation and pluripotency through an S1P/STAT3 signaling pathway. Biomolecules 3(3):351–368. doi:10.3390/biom3030351 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ryu JM, Baek YB, Shin MS, Park JH, Park SH, Lee JH, Han HJ (2014) Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent beta-arrestin/c-Src pathways. Stem Cell Res 12(1):69–85. doi:10.1016/j.scr.2013.08.013 CrossRefPubMedGoogle Scholar
  41. 41.
    Arya D, Chang S, DiMuzio P, Carpenter J, Tulenko TN (2014) Sphingosine-1-phosphate promotes the differentiation of adipose-derived stem cells into endothelial nitric oxide synthase (eNOS) expressing endothelial-like cells. J Biomed Sci 21:55. doi:10.1186/1423-0127-21-55 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ratajczak MZ, Suszynska M (2016) Emerging strategies to enhance homing and engraftment of hematopoietic stem cells. Stem Cell Rev 12(1):121–128. doi:10.1007/s12015-015-9625-5 CrossRefPubMedGoogle Scholar
  43. 43.
    Adamiak M, Borkowska S, Wysoczynski M, Suszynska M, Kucia M, Rokosh G, Abdel-Latif A, Ratajczak J, Ratajczak MZ (2015) Evidence for the involvement of sphingosine-1-phosphate in the homing and engraftment of hematopoietic stem cells to bone marrow. Oncotarget 6(22):18819–18828. doi:10.18632/oncotarget.4710 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323(5913):524–527. doi:10.1126/science.1167449 ADSCrossRefPubMedGoogle Scholar
  45. 45.
    Bieberich E (2012) Ceramide and sphingosine-1-phosphate signaling in embryonic stem cell differentiation. Methods Mol Biol 874:177–192. doi:10.1007/978-1-61779-800-9_14 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bieberich E (2010) There is more to a lipid than just being a fat: sphingolipid-guided differentiation of oligodendroglial lineage from embryonic stem cells. Neurochem Res. doi:10.1007/s11064-010-0338-5
  47. 47.
    Hancock CR, Wetherington JP, Lambert NA, Condie BG (2000) Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells. Biochem Biophys Res Commun 271(2):418–421CrossRefPubMedGoogle Scholar
  48. 48.
    Westmoreland JJ, Hancock CR, Condie BG (2001) Neuronal development of embryonic stem cells: a model of GABAergic neuron differentiation. Biochem Biophys Res Commun 284(3):674–680CrossRefPubMedGoogle Scholar
  49. 49.
    Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59(1):89–102. 0925477396005722 [pii]CrossRefPubMedGoogle Scholar
  50. 50.
    Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG (2003) Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J Cell Biol 162(3):469–479CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bieberich E, MacKinnon S, Silva J, Yu RK (2001) Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J Biol Chem 276(48):44396–44404CrossRefPubMedGoogle Scholar
  52. 52.
    Bieberich E (2002) Recurrent fractal neural networks: a strategy for the exchange of local and global information processing in the brain. Biosystems 66(3):145–164CrossRefPubMedGoogle Scholar
  53. 53.
    Salli U, Fox TE, Carkaci-Salli N, Sharma A, Robertson GP, Kester M, Vrana KE (2009) Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide. Stem Cells Dev 18(1):55–65. doi:10.1089/scd.2007.0271 CrossRefPubMedGoogle Scholar
  54. 54.
    Krishnamurthy K, Wang G, Silva J, Condie BG, Bieberich E (2007) Ceramide regulates atypical PKC{zeta}/{lambda}-mediated cell polarity in primitive ectoderm cells: a novel function of sphingolipids in morphogenesis. J Biol Chem 282(5):3379–3390CrossRefPubMedGoogle Scholar
  55. 55.
    Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A (2010) Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Adv Exp Med Biol 688:46–59CrossRefPubMedGoogle Scholar
  56. 56.
    Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A (2009) Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 579:443–467. doi:10.1007/978-1-60761-322-0_22 CrossRefPubMedGoogle Scholar
  57. 57.
    Kramer R, Bielawski J, Kistner-Griffin E, Othman A, Alecu I, Ernst D, Kornhauser D, Hornemann T, Spassieva S (2015) Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB J. doi:10.1096/fj.15-272567. fj.15-272567 [pii]
  58. 58.
    Van Veldhoven PP, Bell RM (1988) Effect of harvesting methods, growth conditions and growth phase on diacylglycerol levels in cultured human adherent cells. Biochim Biophys Acta 959(2):185–196CrossRefPubMedGoogle Scholar
  59. 59.
    Krishnamurthy K, Dasgupta S, Bieberich E (2007) Development and characterization of a novel anti-ceramide antibody. J Lipid Res 48(4):968–975CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Guanghu Wang
    • 1
  • Stefka D. Spassieva
    • 2
  • Erhard Bieberich
    • 1
    • 3
  1. 1.Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUSA
  2. 2.Department of Molecular and Cellular MedicineTexas A&M Medical Health Sciences CenterBryanUSA
  3. 3.Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUSA

Personalised recommendations