Extracellular Matrix from Whole Porcine Heart Decellularization for Cardiac Tissue Engineering

  • Matthew J. Hodgson
  • Christopher C. Knutson
  • Nima Momtahan
  • Alonzo D. CookEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1577)


Decellularization of whole porcine hearts followed by recellularization with fully differentiated cells made from patient-specific human induced pluripotent stem cells (iPSCs) may provide the ultimate solution for patients with heart failure. Decellularization is the process of completely disrupting all cells and removing the cellular components (e.g., antigenic proteins, lipids, DNA) from organic tissue, leaving only the extracellular matrix (ECM). The decellularization of porcine hearts can be accomplished in 24 h and results in 98% DNA removal with only 6 h of detergent exposure. Automatically controlling the pressure during decellularization reduces the detergent exposure time while still completely removing immunogenic cell debris.


Acellular biological matrices Automation Cardiomyocytes Decellularization Differentiation Extracellular matrix Heart Induced pluripotent stem cells 


  1. 1.
    Hanson KP, Jung JP, Tran QA, Hsu SP, Lida R, Ajeti V, Campagnola PJ, Eliceiri KW, Squirrell JM, Lyons GE, Ogle BM (2013) Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng Part A 19:1132CrossRefGoogle Scholar
  2. 2.
    Momtahan N, Sukavaneshvar S, Roeder BL, Cook AD (2015) Strategies and processes to decellularize and recellularize hearts to generate functional organs and reduce the risk of thrombosis. Tissue Eng Part B Rev 21:115CrossRefGoogle Scholar
  3. 3.
    Guyette JP, Gilpin SE, Charest JM, Tapias LF, Ren X, Ott HC (2014) Perfusion decellularization of whole organs. Nat Protoc 9:1451CrossRefGoogle Scholar
  4. 4.
    Ott HC, Matthiesen TS, Goh S, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213CrossRefGoogle Scholar
  5. 5.
    Faulk DM, Carruthers CA, Warner HJ, Kramer CR, Reing JE, Zhang L, D’Amore A, Badylak SF (2014) The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater 10:183CrossRefGoogle Scholar
  6. 6.
    Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675PubMedGoogle Scholar
  7. 7.
    Price AP, Godin LM, Domek A, Cotter T, D’Cunha J, Taylor DA, Panoskaltsis-Mortari A (2015) Automated decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng Part C Methods 21:94CrossRefGoogle Scholar
  8. 8.
    Huelsmann J, Aubin H, Kranz A, Godehardt E, Munakata H, Kamiya H, Barth M, Lichtenberg A, Akhyari P (2013) A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation. J Artif Organs 16:294CrossRefGoogle Scholar
  9. 9.
    Momtahan N, Poornejad N, Struk JA, Castleton AA, Herrod BJ, Vance BR, Eatough JP, Roeder BL, Reynolds PR, Cook AD (2015) Automation of pressure control improves whole porcine heart decellularization. Tissue Eng Part C Methods 21(11):1148–1161CrossRefGoogle Scholar
  10. 10.
    Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Shunsuke A, Sugiura M, Ideno H, Shimada A, Nifuji A, Abe M (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494:100CrossRefGoogle Scholar
  11. 11.
    Lin B, Lu T-Y, Yang L (2014) Hear the beat: decellularized mouse heart regenerated with human induced pluripotent stem cells. Expert Rev Cardiovasc Ther 12:135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Matthew J. Hodgson
    • 1
  • Christopher C. Knutson
    • 1
  • Nima Momtahan
    • 1
  • Alonzo D. Cook
    • 1
    Email author
  1. 1.Brigham Young UniversityProvoUSA

Personalised recommendations