Skip to main content
View expanded cover

Mitophagy pp 95–104Cite as

Mitophagy in Yeast: A Screen of Mitophagy-Deficient Mutants

Part of the Methods in Molecular Biology book series (MIMB,volume 1759)

Abstract

Mitochondrial autophagy (mitophagy) is a process that selectively degrades mitochondria via autophagy. Recent studies have shown that mitophagy plays an important role in mitochondrial homeostasis by degrading damaged or excess mitochondria. The budding yeast Saccharomyces cerevisiae is a powerful model organism that has been employed to study several biological phenomena. Recently, there has been significant progress in the understanding of mitophagy in yeast following the identification of Atg32, a mitochondrial outer membrane receptor protein for mitophagy. In this chapter, we describe protocols to study mitophagy in yeast via a genome-wide screen for mitophagy-deficient mutants using fluorescence microscopy and immunoblotting.

Keywords:

  • Yeast
  • Mitochondria
  • Mitophagy
  • Genome-wide screening
  • Fluorescence microscopy
  • Immunoblotting

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A 104:19500–19505

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, Zhu Y, Zhang X, Li L, Zhang L, Sui S, Zhao B, Feng D (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15:566–575

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, Taneike M, Misaka T, Omiya S, Shah AM, Yamamoto A, Nishida K, Ohsumi Y, Okamoto K, Sakata Y, Otsu K (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6:7527

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    CrossRef  CAS  PubMed  Google Scholar 

  6. Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194:341–361

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanki T, Klionsky DJ (2008) Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 283:32386–32393

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    CrossRef  PubMed  Google Scholar 

  9. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mao K, Wang K, Zhao M, Xu T, Klionsky DJ (2011) Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 193:755–767

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aoki Y, Kanki T, Hirota Y, Kurihara Y, Saigusa T, Uchiumi T, Kang D (2011) Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 22:3206–3217

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T, Kang D (2012) Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem 287:3265–3272

    CrossRef  CAS  PubMed  Google Scholar 

  13. Kanki T, Kurihara Y, Jin X, Goda T, Ono Y, Aihara M, Hirota Y, Saigusa T, Aoki Y, Uchiumi T, Kang D (2013) Casein kinase 2 is essential for mitophagy. EMBO Rep 14:788–794

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aihara M, Jin X, Kurihara Y, Yoshida Y, Matsushima Y, Oku M, Hirota Y, Saigusa T, Aoki Y, Uchiumi T, Yamamoto T, Sakai Y, Kang D, Kanki T (2014) Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J Cell Sci 127:3184–3196

    CrossRef  CAS  PubMed  Google Scholar 

  15. Kanki T, Furukawa K, Yamashita S (2015) Mitophagy in yeast: molecular mechanisms and physiological role. Biochim Biophys Acta 1853:2756–2765

    CrossRef  CAS  PubMed  Google Scholar 

  16. Müller M, Kötter P, Behrendt C, Walter E, Scheckhuber CQ, Entian KD, Reichert AS (2015) Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy. Cell Rep 10:1215–1225

    CrossRef  CAS  PubMed  Google Scholar 

  17. Böckler S, Westermann B (2014) Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell 28:450–458

    CrossRef  CAS  PubMed  Google Scholar 

  18. Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, Geng J, Mao K, Yang Z, Yen WL, Klionsky DJ (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 20:4730–4738

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    CrossRef  CAS  PubMed  Google Scholar 

  20. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    CrossRef  CAS  PubMed  Google Scholar 

  21. Van Driessche B, Tafforeau L, Hentges P, Carr AM, Vandenhaute J (2005) Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance. Yeast 22:1061–1068

    CrossRef  CAS  PubMed  Google Scholar 

  22. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Japan Society for the Promotion of Science KAKENHI Grant numbers 26291039 (TK), 16H01198 (TK), 16H01384 (TK), 15H06223 (KF), and 16K18514 (KF), Yujin Memorial Grant (Niigata University School of Medicine) (TK), The Sumitomo Foundation (TK), Astellas Foundation for Research on Metabolic Disorders (TK), and Takeda Science Foundation (TK, KF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomotake Kanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Furukawa, K., Kanki, T. (2017). Mitophagy in Yeast: A Screen of Mitophagy-Deficient Mutants. In: Hattori, N., Saiki, S. (eds) Mitophagy. Methods in Molecular Biology, vol 1759. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_13

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7749-9

  • Online ISBN: 978-1-4939-7750-5

  • eBook Packages: Springer Protocols