Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth

  • Jan Poleszczuk
  • Paul Macklin
  • Heiko Enderling
Part of the Methods in Molecular Biology book series (MIMB, volume 1516)


Computational modeling of tumor growth has become an invaluable tool to simulate complex cell–cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.


Agent-based model Tumor growth Cancer stem cell Calibration Domain Search order High performance Digital cell line 



JP and HE were partially supported by the Personalized Medicine Award 09-33000-15-03 from the DeBartolo Family Personalized Medicine Institute Pilot Research Awards in Personalized Medicine (PRAPM). PM was supported by the Breast Cancer Research Foundation and the National Institutes of Health [1R01CA180149].


  1. 1.
    Anderson A, Chaplain MAJ, Rejniak K (2007) Single-cell-based models in biology and medicine. Springer Science & Business Media, Birkhäuser Basel, ISBN 978-3-7643-8101-1Google Scholar
  2. 2.
    Enderling H, Rejniak KA (2013) Simulating cancer: computational models in oncology. Frontiers Oncol 3:233Google Scholar
  3. 3.
    Wang Z, Butner JD, Kerketta R et al (2015) Simulating cancer growth with multiscale agent-based modeling. Semin Cancer Biol 30:70–78Google Scholar
  4. 4.
    d’Inverno M, Saunders R (2004) Agent-based modelling of stem cell self-organisation in a niche. In: Engineering Self-Organising Systems. Springer, Berlin, pp 52–68Google Scholar
  5. 5.
    Mallet DG, de Pillis LG (2006) A cellular automata model of tumor-immune system interactions. J Theor Biol 239:334–350CrossRefPubMedGoogle Scholar
  6. 6.
    Chao DL, Eck JT, Brash DE et al (2008) Preneoplastic lesion growth driven by the death of adjacent normal stem cells. Proc Natl Acad Sci U S A 105:15034–15039CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Enderling H, Hlatky L, Hahnfeldt P (2009) Migration rules: tumours are conglomerates of self-metastases. Br J Cancer 100:1917–1925CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Enderling H, Anderson ARA, Chaplain MAJ et al (2009) Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res 69:8814–8821CrossRefPubMedGoogle Scholar
  9. 9.
    Norton K-A, Popel AS (2014) An agent-based model of cancer stem cell initiated avascular tumour growth and metastasis: the effect of seeding frequency and location. J R Soc Interface 11, pii: 20140640Google Scholar
  10. 10.
    Gerlee P, Anderson ARA (2008) A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype. J Theor Biol 250:705–722CrossRefPubMedGoogle Scholar
  11. 11.
    Sottoriva A, Verhoeff JJC, Borovski T et al (2010) Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res 70:46–56CrossRefPubMedGoogle Scholar
  12. 12.
    Poleszczuk J, Hahnfeldt P, Enderling H (2015) Evolution and phenotypic selection of cancer stem cells. PLoS Comput Biol 11:e1004025CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Anderson ARA, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8:227–234CrossRefPubMedGoogle Scholar
  14. 14.
    Yankeelov TE, Quaranta V, Evans KJ et al (2015) Toward a science of tumor forecasting for clinical oncology. Cancer Res 75:918–923CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci U S A 104:876–881CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gatenby RA, Smallbone K, Maini PK et al (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97:646–653CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Enderling H, Hlatky L, Hahnfeldt P (2012) The promoting role of a tumour-secreted chemorepellent in self-metastatic tumour progression. Math Med Biol 29:21–29CrossRefPubMedGoogle Scholar
  18. 18.
    Enderling H, Alexander NR, Clark ES et al (2008) Dependence of invadopodia function on collagen fiber spacing and cross-linking: computational modeling and experimental evidence. Biophys J 95:2203–2218CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schlüter DK, Ramis-Conde I, Chaplain MAJ (2012) Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys J 103:1141–1151CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 247:186–204CrossRefPubMedGoogle Scholar
  21. 21.
    Drasdo D, Höhme S (2005) A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys Biol 2:133–147CrossRefPubMedGoogle Scholar
  22. 22.
    Ramis-Conde I, Drasdo D, Anderson ARA et al (2008) Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys J 95:155–165CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schlüter DK, Ramis-Conde I, Chaplain MAJ (2015) Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations. J R Soc Interface 12, piii: 20141080Google Scholar
  24. 24.
    Enderling H (2014) Cancer stem cells: small subpopulation or evolving fraction? Integr Biol 7:14–23CrossRefGoogle Scholar
  25. 25.
    Alfonso JCL, Jagiella N, Núñez L et al (2014) Estimating dose painting effects in radiotherapy: a mathematical model. PLoS One 9:e89380CrossRefPubMedGoogle Scholar
  26. 26.
    Dingli D, Traulsen A, Michor F (2007) (A)symmetric stem cell replication and cancer. PLoS Comput Biol 3:e53CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190CrossRefPubMedGoogle Scholar
  28. 28.
    Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120:33–53CrossRefPubMedGoogle Scholar
  29. 29.
    Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res DNAging 256:271–282CrossRefGoogle Scholar
  30. 30.
    Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636CrossRefPubMedGoogle Scholar
  31. 31.
    Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMedGoogle Scholar
  32. 32.
    Maugeri-Saccà M, Bartucci M, De Maria R (2012) DNA damage repair pathways in cancer stem cells. Mol Cancer Ther 11:1627–1636CrossRefPubMedGoogle Scholar
  33. 33.
    Skvortsov S, Debbage P, Lukas P et al (2015) Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin Cancer Biol 31:36–42CrossRefPubMedGoogle Scholar
  34. 34.
    Allsopp RC, Morin GB, DePinho R et al (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Hematopoiesis 102:517–520Google Scholar
  35. 35.
    Shay JW, Wright WE (2010) Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 584:3819–3825Google Scholar
  36. 36.
    Gao X, McDonald JT, Hlatky L et al (2013) Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Res 73:1481–1490CrossRefPubMedGoogle Scholar
  37. 37.
    Anderson ARA, Chaplain MAJ, Newman EL et al (2000) Mathematical modelling of tumour invasion and metastasis. Comput Math Methods Med 2:129–154Google Scholar
  38. 38.
    Anderson ARA, Weaver AM, Cummings PT et al (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127:905–915CrossRefPubMedGoogle Scholar
  39. 39.
    Enderling H, Hlatky L, Hahnfeldt P (2010) Tumor morphological evolution: directed migration and gain and loss of the self-metastatic phenotype. Biol Direct 5:23CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kareva I (2015) Immune evasion through competitive inhibition: the shielding effect of cancer non-stem cells. J Theor Biol 364:40–48CrossRefPubMedGoogle Scholar
  41. 41.
    Bravo R, Axelrod DE (2013) A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments. Theor Biol Med Model 10:66CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Swat MH, Thomas GL, Belmonte JM et al (2012) Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol 110:325–366CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mirams GR, Arthurs CJ, Bernabeu MO et al (2013) Chaste: an open source C++ library for computational physiology and biology. PLoS Comput Biol 9:e1002970CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Minar N, Burkhart R, Langton C et al (1996) The swarm simulation system: a toolkit for building multi-agent simulations. Working Paper 96-06-042, Santa Fe Institute, Santa FeGoogle Scholar
  45. 45.
    Enderling H (2013) Cancer stem cells and tumor dormancy. Adv Exp Med Biol 734:55–71CrossRefPubMedGoogle Scholar
  46. 46.
    Marjanovic ND, Weinberg RA, Chaffer CL (2013) Cell plasticity and heterogeneity in cancer. Clin Chem 59:168–179Google Scholar
  47. 47.
    Schwitalla S (2014) Tumor cell plasticity: the challenge to catch a moving target. J Gastroenterol 49:618–627CrossRefPubMedGoogle Scholar
  48. 48.
    Poleszczuk J, Enderling H (2016) Cancer stem cell plasticity as tumor growth promoter and catalyst of population collapse. Stem Cells Int. 2016:3923527Google Scholar
  49. 49.
    Campisi J, Kim SH, Lim CS et al (2001) Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol 36:1619–1637CrossRefPubMedGoogle Scholar
  50. 50.
    Poleszczuk J, Hahnfeldt P, Enderling H (2014) Biphasic modulation of cancer stem cell-driven solid tumour dynamics in response to reactivated replicative senescence. Cell Prolif 47:267–276CrossRefPubMedGoogle Scholar
  51. 51.
    Sottoriva A, Vermeulen L, Tavaré S (2011) Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput Biol 7:e1001132CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Scott JG, Hjelmeland AB, Chinnaiyan P et al (2014) Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity. PLoS Comput Biol 10:e1003433CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Carulli AJ, Samuelson LC, Schnell S (2014) Unraveling intestinal stem cell behavior with models of crypt dynamics. Integr Biol 6:243–257CrossRefGoogle Scholar
  54. 54.
    Sluka JP, Shirinifard A, Swat M et al (2014) The cell behavior ontology: describing the intrinsic biological behaviors of real and model cells seen as active agents. Bioinformatics 30:2367–2374CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531CrossRefPubMedGoogle Scholar
  56. 56.
    Myers C, Myers C (2011) Dynamic structures in SBML. Nat Precedings,
  57. 57.
    Enderling H, Park D, Hlatky L et al (2009) The importance of spatial distribution of stemness and proliferation state in determining tumor radioresponse. Math Model Nat Phenom 4:117–133CrossRefGoogle Scholar
  58. 58.
    Powathil GG, Kohandel M, Sivaloganathan S et al (2007) Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med Biol 52:3291–3306CrossRefPubMedGoogle Scholar
  59. 59.
    Kempf H, Hatzikirou H, Bleicher M et al (2013) In silico analysis of cell cycle synchronisation effects in radiotherapy of tumour spheroids. PLoS Comput Biol 9:e1003295CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Powathil GG, Gordon KE, Hill LA et al (2012) Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model. J Theor Biol 308:1–19CrossRefPubMedGoogle Scholar
  61. 61.
    Wodarz D, Hofacre A, Lau JW et al (2012) Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches. PLoS Comput Biol 8:e1002547CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Shengjun W, Yunbo G, Liyan S et al (2012) Quantitative study of cytotoxic T-lymphocyte immunotherapy for nasopharyngeal carcinoma. Theor Biol Med Model 9:6CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gerlee P, Anderson ARA (2007) Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys Rev E Stat Nonlin Soft Matter Phys 75:051911CrossRefPubMedGoogle Scholar
  64. 64.
    Gerlee P, Anderson ARA (2010) Diffusion-limited tumour growth: simulations and analysis. Math Biosci Eng 7:385–400CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Poleszczuk J, Enderling H (2014) A high-performance cellular automaton model of tumor growth with dynamically growing domains. Appl Math 5:144–152CrossRefGoogle Scholar
  66. 66.
    Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22:163–186CrossRefPubMedGoogle Scholar
  67. 67.
    Gerlee P, Anderson ARA (2007) An evolutionary hybrid cellular automaton model of solid tumour growth. J Theor Biol 246:583–603CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Enderling H, Hlatky L, Hahnfeldt P (2012) Immunoediting: evidence of the multifaceted role of the immune system in self-metastatic tumor growth. Theor Biol Med Model 9:31CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Macklin P, Edgerton ME, Thompson AM et al (2012) Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression. J Theor Biol 301:122–140CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  2. 2.Center for Applied Molecular MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations