pp 1-12

Part of the Methods in Molecular Biology book series | Cite as

Drug Sensitivity Assays of Human Cancer Organoid Cultures

  • Hayley E. Francies
  • Andrew Barthorpe
  • Anne McLaren-Douglas
  • William J. Barendt
  • Mathew J. Garnett
Protocol

Abstract

Drug sensitivity testing utilizing preclinical disease models such as cancer cell lines is an important and widely used tool for drug development. Importantly, when combined with molecular data such as gene copy number variation or somatic coding mutations, associations between drug sensitivity and molecular data can be used to develop markers to guide patient therapies. The use of organoids as a preclinical cancer model has become possible following recent work demonstrating that organoid cultures can be derived from patient tumors with a high rate of success. A genetic analysis of colon cancer organoids found that these models encompassed the majority of the somatic variants present within the tumor from which it was derived, and capture much of the genetic diversity of colon cancer observed in patients. Importantly, the systematic sensitivity testing of organoid cultures to anticancer drugs identified clinical gene–drug interactions, suggestive of their potential as preclinical models for testing anticancer drug sensitivity. In this chapter, we describe how to perform medium/high-throughput drug sensitivity screens using 3D organoid cell cultures.

Keywords:

Drug screening Organoids Cancer Cell lines Cancer models Drugs Targeted therapy Preclinical 

References

  1. 1.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139CrossRefPubMedGoogle Scholar
  2. 2.
    Paez JG, Jänne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500ADSCrossRefPubMedGoogle Scholar
  3. 3.
    Garnett MJ, Edelman EJ, Heidorn SJ et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–575ADSCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barretina J, Caponigro G, Stransky N et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607ADSCrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Basu A, Bodycombe NE, Cheah JH et al (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154:1151–1161CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Seashore-Ludlow B, Rees MG, Cheah JH et al (2015) Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov 5:1210–1223CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13:215CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wistuba II, Behrens C, Milchgrub S et al (1998) Comparison of features of human breast cancer cell lines and their corresponding tumors. Clin Cancer Res 4:2931–2938PubMedGoogle Scholar
  9. 9.
    Burdall SE, Hanby AM, Lansdown MR et al (2003) Breast cancer cell lines: friend or foe? Breast Cancer Res 5:89–95CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265ADSCrossRefPubMedGoogle Scholar
  11. 11.
    Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772CrossRefPubMedGoogle Scholar
  12. 12.
    Liu X, Ory V, Chapman S (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180:599–607CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Boj SF, Hwang CI, Baker LA et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–338CrossRefPubMedGoogle Scholar
  14. 14.
    van de Wetering M, Francies HE, Francis JM et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–945CrossRefPubMedGoogle Scholar
  15. 15.
    Huch M, Gehart H, van Boxtel R et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gao D, Vela I, Sbiner A et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159:176–187CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73CrossRefPubMedGoogle Scholar
  18. 18.
    Vis DJ, Bombardelli L, Lightfoot H et al (2016) Multilevel models improve precision and speed of IC50 estimates. Pharmacogenomics 7:691–700CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hayley E. Francies
    • 1
  • Andrew Barthorpe
    • 1
  • Anne McLaren-Douglas
    • 1
  • William J. Barendt
    • 1
  • Mathew J. Garnett
    • 1
  1. 1.Wellcome Trust Sanger InstituteCambridgeUK

Personalised recommendations