Resolving Heterogeneity: Fluorescence-Activated Cell Sorting of Dynamic Cell Populations from Feeder-Free Mouse Embryonic Stem Cell Culture

  • Jurriaan Hölzenspies
  • Gelo Dela Cruz
  • Joshua M. BrickmanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1341)


Embryonic stem cell (ESC) culture comprises a mixture of cells that are primed to differentiate into different lineages. In conditions where ESCs self-renew, these primed populations continuously interconvert and consequently show highly dynamic coordinated changes in their expression of different sets of pluripotency and differentiation markers. It has become increasingly apparent that this transcriptional heterogeneity is an important characteristic of ESC culture. By sorting for specific populations of ESCs it is possible to enrich for cells with a capacity to colonize the embryo proper or the extra-embryonic lineages such as the descendents of the primitive endoderm or trophoblast. Here, we describe a method of isolating specific sub-sets of ESCs from the pluripotent cells present in in vitro ESC culture using SSEA1 antibody staining in combination with reporter lines and fluorescence activated cell sorting (FACS).


Embryonic stem cells Lineage priming Self renewal Pluripotency Endoderm Transcription 


  1. 1.
    Gardner RL (1985) Clonal analysis of early mammalian development. Philos Trans R Soc Lond B Biol Sci 312:163–178CrossRefPubMedGoogle Scholar
  2. 2.
    Rossant J, Chazaud C, Yamanaka Y (2003) Lineage allocation and asymmetries in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci 358:1341–1349PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Yamanaka Y, Ralston A, Stephenson RO, Rossant J (2006) Cell and molecular regulation of the mouse blastocyst. Dev Dyn 235:2301–2314CrossRefPubMedGoogle Scholar
  4. 4.
    Gardner RL (1982) Investigation of cell lineage and differentiation in the extraembryonic endoderm of the mouse embryo. J Embryol Exp Morphol 68:175–198PubMedGoogle Scholar
  5. 5.
    Gardner RL (1984) An in situ cell marker for clonal analysis of development of the extraembryonic endoderm in the mouse. J Embryol Exp Morphol 80:251–288PubMedGoogle Scholar
  6. 6.
    Gardner RL, Rossant J (1979) Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 52:141–152PubMedGoogle Scholar
  7. 7.
    Kwon GS, Viotti M, Hadjantonakis A-K (2008) The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev Cell 15:509–520PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis A-K (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624CrossRefPubMedGoogle Scholar
  10. 10.
    Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG et al (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34:e42PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Rossant J, Tam PPL (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713CrossRefPubMedGoogle Scholar
  12. 12.
    Grabarek JB, Żyżyńska K, Saiz N, Piliszek A, Frankenberg S, Nichols J et al (2012) Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development 139:129–139PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M et al (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450:1230–1234CrossRefPubMedGoogle Scholar
  14. 14.
    Filipczyk A, Gkatzis K, Fu J, Hoppe PS, Lickert H, Anastassiadis K et al (2013) Biallelic expression of Nanog protein in mouse embryonic stem cells. Cell Stem Cell 13:12–13CrossRefPubMedGoogle Scholar
  15. 15.
    Singh AM, Hamazaki T, Hankowski KE, Terada N (2007) A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25:2534–2542CrossRefPubMedGoogle Scholar
  16. 16.
    Canham MA, Sharov AA, Ko MSH, Brickman JM (2010) Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol 8:e1000379PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Martinez Arias A, Brickman JM (2011) Gene expression heterogeneities in embryonic stem cell populations: origin and function. Curr Opin Cell Biol 23:650–656CrossRefPubMedGoogle Scholar
  18. 18.
    Morgani SM, Canham MA, Nichols J, Sharov AA, Migueles RP, Ko MSH et al (2013) Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep 3:1945–1957PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Torres-Padilla M-E, Chambers I (2014) Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 141:2173–2181CrossRefPubMedGoogle Scholar
  20. 20.
    Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H (2008) Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135:909–918CrossRefPubMedGoogle Scholar
  21. 21.
    Berg DLC, van den Zhang W, Yates A, Engelen E, Takacs K, Bezstarosti K et al (2008) Estrogen-related receptor beta interacts with Oct4 to positively regulate Nanog gene expression. Mol Cell Biol 28:5986–5995PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Hayashi K, Lopes SM, Tang F, Surani MA (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3:391–401CrossRefPubMedGoogle Scholar
  23. 23.
    Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122CrossRefPubMedGoogle Scholar
  24. 24.
    Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee S-L et al (2010) Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464:858–863PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D et al (2012) ES cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63PubMedCentralPubMedGoogle Scholar
  26. 26.
    Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295CrossRefPubMedGoogle Scholar
  27. 27.
    Davies D (2007) Cell sorting by flow cytometry. In: Macey MG (ed) Flow cytometry. Humana Press, Totowa, NJ, pp 257–276CrossRefGoogle Scholar
  28. 28.
    Hoffman RA (2001) Pulse width for particle sizing. In Current protocols in cytometry. John Wiley & Sons, Inc., New York, pp. 1.23.1–1.23.17Google Scholar
  29. 29.
    Allen P, Davies D (2007) Apoptosis detection by flow cytometry. In: Macey MG (ed) Flow cytometry. Humana Press, Totowa, NJ, pp 147–163CrossRefGoogle Scholar
  30. 30.
    Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20CrossRefPubMedGoogle Scholar
  31. 31.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jurriaan Hölzenspies
    • 1
  • Gelo Dela Cruz
    • 1
  • Joshua M. Brickman
    • 1
    Email author
  1. 1.The Danish Stem Cell Centre—DanStemUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations