Advertisement

A Protocol to Collect Specific Mouse Skeletal Muscles for Metabolomics Studies

  • Zhuohui Gan
  • Zhenxing Fu
  • Jennifer C. Stowe
  • Frank L. Powell
  • Andrew D. McCulloch
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1375)

Abstract

Due to the highly sensitive nature of metabolic states, the quality of metabolomics data depends on the suitability of the experimental procedure. Metabolism could be affected by factors such as the method of euthanasia of the animals and the sample collection procedures. The effects of these factors on metabolites are tissue-specific. Thus, it is important to select proper methods to sacrifice the animal and appropriate procedures for collecting samples specific to the tissue of interest. Here, we present our protocol to collect specific mouse skeletal muscles with different fiber types for metabolomics studies. We also provide a protocol to measure lactate levels in tissue samples as a way to estimate the metabolic state in collected samples.

Keywords:

Skeletal muscle Dissection Euthanasia Metabolomics Lactate Amplex Red 

Notes

Acknowledgements

Grant NIH/NHLBI 1P01HL098053 supported this manuscript preparation.

References

  1. 1.
    Mizunoya W, Wakamatsu J, Tatsumi R et al (2008) Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system. Anal Biochem 377(1):111–113CrossRefPubMedGoogle Scholar
  2. 2.
    Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171CrossRefPubMedGoogle Scholar
  3. 3.
    Noack S, Wiechert W (2014) Quantitative metabolomics: a phantom? Trends Biotechnol 32(5):238–244CrossRefPubMedGoogle Scholar
  4. 4.
    Evans CA, Kerkut GA (1981) Effect of nembutal anesthesia, electric shock, and shock avoidance conditioning on acetylcholinesterase activity and protein content in various regions of the rat brain. Neurosci Behav Physiol 11(6):614–620CrossRefPubMedGoogle Scholar
  5. 5.
    Marquez-Julio A, French IW (1967) The effect of ether, pentobarbital, and decapitation on various metabolites of rat skeletal muscle. Can J Biochem 45(9):1323–1327CrossRefPubMedGoogle Scholar
  6. 6.
    Pence HH, Pence S, Kurtul N et al (2003) The alterations in adenosine nucleotides and lactic acid levels in striated muscles following death with cervical dislocation or electric shock. Soud Lek 48(1):8–11PubMedGoogle Scholar
  7. 7.
    Rezin GT, Goncalves CL, Daufenbach JF et al (2009) Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res Bull 79(6):418–421CrossRefPubMedGoogle Scholar
  8. 8.
    Chang Y, Chen TL, Sheu JR et al (2005) Suppressive effects of ketamine on macrophage functions. Toxicol Appl Pharmacol 204(1):27–35CrossRefPubMedGoogle Scholar
  9. 9.
    de Oliveira L, Fraga DB, De Luca RD et al (2011) Behavioral changes and mitochondrial dysfunction in a rat model of schizophrenia induced by ketamine. Metab Brain Dis 26(1):69–77CrossRefPubMedGoogle Scholar
  10. 10.
    Pravdic D, Hirata N, Barber L et al (2012) Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria. Eur J Pharmacol 690(1–3):149–157CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang Y, Xu Z, Wang H et al (2012) Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol 71(5):687–698CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kohro S, Hogan QH, Nakae Y et al (2001) Anesthetic effects on mitochondrial ATP-sensitive K channel. Anesthesiology 95(6):1435–1440CrossRefPubMedGoogle Scholar
  13. 13.
    Braun S, Gaza N, Werdehausen R et al (2010) Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells. Br J Anaesth 105(3):347–354CrossRefPubMedGoogle Scholar
  14. 14.
    Takaki M, Nakahara H, Kawatani Y et al (1997) No suppression of respiratory function of mitochondrial isolated from the hearts of anesthetized rats with high-dose pentobarbital sodium. Jpn J Physiol 47(1):87–92CrossRefPubMedGoogle Scholar
  15. 15.
    Du F, Zhang Y, Iltis I et al (2009) In vivo proton MRS to quantify anesthetic effects of pentobarbital on cerebral metabolism and brain activity in rat. Magn Reson Med 62(6):1385–1393CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yamamoto Y, Hasegawa H, Ikeda K et al (1988) Cervical dislocation of mice induces rapid accumulation of platelet serotonin in the lung. Agents Actions 25(1–2):48–56CrossRefPubMedGoogle Scholar
  17. 17.
    Fischer JC, Ruitenbeek W, Stadhouders AM et al (1985) Investigation of mitochondrial metabolism in small human skeletal muscle biopsy specimens. Improvement of preparation procedure. Clin Chim Acta 145(1):89–99CrossRefPubMedGoogle Scholar
  18. 18.
    Boros-Hatfaludy S, Fekete G, Apor P (1986) Metabolic enzyme activity patterns in muscle biopsy samples in different athletes. Eur J Appl Physiol Occup Physiol 55(3):334–338CrossRefPubMedGoogle Scholar
  19. 19.
    Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35(7):609–616CrossRefPubMedGoogle Scholar
  20. 20.
    Antal C, Teletin M, Wendling O et al (2007) Tissue collection for systematic phenotyping in the mouse. Curr Protoc Mol Biol Chapter 29:Unit 29A 24Google Scholar
  21. 21.
    Winder WW, Fuller EO, Conlee RK (1983) Adrenal hormones and liver cAMP in exercising rats – different modes of anesthesia. J Appl Physiol Respir Environ Exerc Physiol 55(5):1634–1636PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhuohui Gan
    • 1
  • Zhenxing Fu
    • 2
  • Jennifer C. Stowe
    • 1
  • Frank L. Powell
    • 2
  • Andrew D. McCulloch
    • 1
  1. 1.Department of BioengineeringUniversity of California San DiegoLa JollaUSA
  2. 2.Department of MedicineUniversity of California San DiegoSan DiegoUSA

Personalised recommendations