A Human Colonic Crypt Culture System to Study Regulation of Stem Cell-Driven Tissue Renewal and Physiological Function

  • Alyson Parris
  • Mark R. Williams
Part of the Methods in Molecular Biology book series (MIMB, volume 1212)


The intestinal epithelium is one of the most rapidly renewing tissues in the human body and fulfils vital physiological roles such as barrier function and transport of nutrients and fluid. Investigation of gut epithelial physiology in health and disease has been hampered by the lack of ex vivo models of the native human intestinal epithelium. Recently, remarkable progress has been made in defining intestinal stem cells and in generating intestinal organoid cultures. In parallel, we have developed a 3D culture system of the native human colonic epithelium that recapitulates the topological hierarchy of stem cell-driven tissue renewal and permits the physiological study of native polarized epithelial cells. Here we describe methods to establish 3D cultures of intact human colonic crypts and conduct real-time imaging of intestinal tissue renewal, cellular signalling, and physiological function, in conjunction with manipulation of gene expression by lentiviral or adenoviral transduction. Visualization of mRNA- and protein-expression patterns in cultured human colonic crypts, and cross-validation with crypts derived from fixed mucosal biopsies, is also described. Alongside studies using intestinal organoids, the near-native human colonic crypt culture model will help to bridge the gap that exists between investigation of colon cancer cell lines and/or animal (tissue) studies, and progression to clinical trials. To this end, the near native human colonic crypt model provides a platform to aid the development of novel strategies for the prevention of inflammatory bowel disease and cancer.


Human Intestine Colon Crypt Stem cells Culture Signalling Immunocytochemistry In situ hybridization Imaging Proliferation Migration Tissue renewal 



We are grateful to all the past and present members of the Williams laboratory for their input into the development and application of the human colonic crypt culture system. The work in the Williams laboratory has been funded by grants from the Biotechnology and Biological Sciences (BB/F015690/1, BB/D018196/1), the Humane Research Trust, Big C cancer charity, John and Pamela Salter Charitable Trust.


  1. 1.
    Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194. doi: 10.1126/science.1234852 CrossRefPubMedGoogle Scholar
  2. 2.
    Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, Kemp R, Tavare S, Winton DJ (2013) Defining stem cell dynamics in models of intestinal tumor initiation. Science 342(6161):995–998. doi: 10.1126/science.1243148 CrossRefPubMedGoogle Scholar
  3. 3.
    Whitehead RH, Brown A, Bhathal PS (1987) A method for the isolation and culture of human colonic crypts in collagen gels. In Vitro Cell Dev Biol 23(6):436–442CrossRefPubMedGoogle Scholar
  4. 4.
    Gibson PR, van de Pol E, Maxwell LE, Gabriel A, Doe WF (1989) Isolation of colonic crypts that maintain structural and metabolic viability in vitro. Gastroenterology 96(2 Pt 1):283–291PubMedGoogle Scholar
  5. 5.
    Grossmann J, Maxson JM, Whitacre CM, Orosz DE, Berger NA, Fiocchi C, Levine AD (1998) New isolation technique to study apoptosis in human intestinal epithelial cells. Am J Pathol 153(1):53–62. doi: 10.1016/s0002-9440(10)65545-9 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Strater J, Wedding U, Barth TF, Koretz K, Elsing C, Moller P (1996) Rapid onset of apoptosis in vitro follows disruption of beta 1-integrin/matrix interactions in human colonic crypt cells. Gastroenterology 110(6):1776–1784CrossRefPubMedGoogle Scholar
  7. 7.
    Reynolds A, Parris A, Evans LA, Lindqvist S, Sharp P, Lewis M, Tighe R, Williams MR (2007) Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol 582(Pt 2):507–524. doi: 10.1113/jphysiol.2007.129718 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111(2):251–263, S0092867402010152 [pii]CrossRefPubMedGoogle Scholar
  9. 9.
    van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250, S0092867402010140 [pii]CrossRefPubMedGoogle Scholar
  10. 10.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007. doi: 10.1038/nature06196, nature06196 [pii]CrossRefPubMedGoogle Scholar
  11. 11.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. doi: 10.1038/nature07935, nature07935 [pii]CrossRefPubMedGoogle Scholar
  12. 12.
    Sato T, Clevers H (2013) Primary mouse small intestinal epithelial cell cultures. Methods Mol Biol (Clifton, NJ) 945:319–328. doi: 10.1007/978-1-62703-125-7_19 CrossRefGoogle Scholar
  13. 13.
    Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772. doi: 10.1053/j.gastro.2011.07.050, S0016-5085(11)01108-5 [pii]CrossRefPubMedGoogle Scholar
  14. 14.
    Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco MA, Sancho E, Clevers H, Batlle E (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17(10):1225–1227. doi: 10.1038/nm.2470 CrossRefPubMedGoogle Scholar
  15. 15.
    Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109. doi: 10.1038/nature09691 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI, Vallance JE, Mayhew CN, Sun Y, Grabowski G, Finkbeiner SR, Spence JR, Shroyer NF, Wells JM, Helmrath MA (2014) An in vivo model of human small intestine using pluripotent stem cells. Nat Med 20(11):1310–1314. doi: 10.1038/nm.3737 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18(4):618–623. doi: 10.1038/nm.2695, nm.2695 [pii]CrossRefPubMedGoogle Scholar
  18. 18.
    Reynolds A, Wharton N, Parris A, Mitchell E, Sobolewski A, Kam C, Bigwood L, El Hadi A, Munsterberg A, Lewis M, Speakman C, Stebbings W, Wharton R, Sargen K, Tighe R, Jamieson C, Hernon J, Kapur S, Oue N, Yasui W, Williams MR (2014) Canonical Wnt signals combined with suppressed TGFbeta/BMP pathways promote renewal of the native human colonic epithelium. Gut 63(4):610–621. doi: 10.1136/gutjnl-2012-304067 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, Leung SY, Chen X (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A 104(39):15418–15423. doi: 10.1073/pnas.0707210104, 0707210104 [pii]CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of East AngliaNorwich, NorfolkUK

Personalised recommendations