Skip to main content

Application of Fluid Mechanical Force to Embryonic Sources of Hemogenic Endothelium and Hematopoietic Stem Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 1212)

Abstract

During embryonic development, hemodynamic forces caused by blood flow support vascular remodeling, arterialization of luminal endothelium, and hematopoietic stem cell (HSC) emergence. Previously, we reported that fluid shear stress plays a key role in stimulating nitric oxide (NO) signaling in the aorta-gonad-mesonephros (AGM) and is essential for definitive hematopoiesis. We employed a Dynamic Flow System modified from a cone-and-plate assembly to precisely regulate in vitro exposure of AGM cells to a defined pattern of laminar shear stress. Here, we present the design of a microfluidic platform accessible to any research group that requires small cell numbers and allows for recirculation of paracrine signaling factors with minimal damage to nonadherent hematopoietic progenitors and stem cells. We detail the assembly of the microfluidic platform using commercially available components and provide specific guidance in the use of an emerging standard in the measurement of embryonic HSC potential, intravenous neonatal transplantation.

Keywords:

  • Hemogenic endothelium
  • Hematopoietic stem cells
  • HSC
  • Biomechanical forces
  • Shear stress
  • AGM

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/7651_2014_95
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2590-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y et al (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:625–636

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  2. Eilken HM, Nishikawa S, Schroeder T (2009) Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457:896–900

    CrossRef  CAS  PubMed  Google Scholar 

  3. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009). The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:892–895

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464:108–111

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  5. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120

    CrossRef  CAS  PubMed  Google Scholar 

  6. Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115

    CrossRef  CAS  PubMed  Google Scholar 

  7. Lam EY, Hall CJ, Crosier PS, Crosier KE, Flores MV (2010) Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 116:909–914

    CrossRef  CAS  PubMed  Google Scholar 

  8. Swiers G, Rode C, Azzoni E, de Bruijn MF (2013) A short history of hemogenic endothelium. Blood Cells Mol Dis 51:206–212

    CrossRef  CAS  PubMed  Google Scholar 

  9. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J et al (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–1135

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  10. North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM et al (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137:736–748

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  11. Culver JC, Dickinson ME (2010) The effects of hemodynamic force on embryonic development. Microcirculation 17:164–178

    CrossRef  PubMed Central  PubMed  Google Scholar 

  12. Wolfe RP, Ahsan T (2013) Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes. Biotechnol Bioeng 110:1231–1242

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7:335–344

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the American Society of Hematology, State of Texas Emerging Technology Fund, and National Institutes of Health to P.L.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela L. Wenzel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, N., Diaz, M.F., Wenzel, P.L. (2014). Application of Fluid Mechanical Force to Embryonic Sources of Hemogenic Endothelium and Hematopoietic Stem Cells. In: Turksen, K. (eds) Stem Cell Renewal and Cell-Cell Communication. Methods in Molecular Biology, vol 1212. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_95

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_95

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2589-6

  • Online ISBN: 978-1-4939-2590-2

  • eBook Packages: Springer Protocols