Fabrication of Biofunctionalized, Cell-Laden Macroporous 3D PEG Hydrogels as Bone Marrow Analogs for the Cultivation of Human Hematopoietic Stem and Progenitor Cells

  • Lisa Rödling
  • Annamarija Raic
  • Cornelia Lee-ThedieckEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1202)


In vitro proliferation of hematopoietic stem cells (HSCs) is yet an unresolved challenge. Found in the bone marrow, HSCs can undergo self-renewing cell division and thereby multiply. Recapitulation of the bone marrow environment in order to provide the required signals for their expansion is a promising approach.

Here, we describe a technique to produce biofunctionalized, macroporous poly(ethylene glycol) diacrylate (PEGDA) hydrogels that mimic the spongy 3D architecture of trabecular bones, which host the red, blood-forming bone marrow. After seeding these scaffolds with cells, they can be used as simplified bone marrow analogs for the cultivation of HSCs. This method can easily be conducted with standard laboratory chemicals and equipment. The 3D hydrogels are produced via salt leaching and biofunctionalization of the material is achieved by co-polymerizing the PEGDA with an RGD peptide. Finally, cell seeding and retrieval are described.


Hematopoietic stem and progenitor cells Biomimetic material 3D scaffolds Bone marrow analog Stem cell niche 



This work was supported by the BioInterfaces programme of the Helmholtz-Association, the “Brigitte Schlieben-Lange-Programm”, the “Käthe und Josef Klinz-Stiftung”, and the BMBF NanoMatFutur programme (FKZ: 13N12968).


  1. 1.
    Rao M, Ahrlund-Richter L, Kaufman DS (2012) Concise review: cord blood banking, transplantation and induced pluripotent stem cell: success and opportunities. Stem Cells 30(1):55–60PubMedCrossRefGoogle Scholar
  2. 2.
    Monti M, Perotti C, Del Fante C et al (2012) Stem cells: sources and therapies. Biol Res 45(3):207–214PubMedCrossRefGoogle Scholar
  3. 3.
    Walasek MA, van Os R, de Haan G (2012) Hematopoietic stem cell expansion: challenges and opportunities. Ann N Y Acad Sci 1266:138–150PubMedCrossRefGoogle Scholar
  4. 4.
    Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611PubMedCrossRefGoogle Scholar
  5. 5.
    Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846PubMedCrossRefGoogle Scholar
  6. 6.
    Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kiel MJ, Radice GL, Morrison SJ (2007) Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1(2):204–217PubMedCrossRefGoogle Scholar
  8. 8.
    Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121PubMedCrossRefGoogle Scholar
  9. 9.
    Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841PubMedCrossRefGoogle Scholar
  11. 11.
    Klein G (1995) The extracellular matrix of the hematopoietic microenvironment. Experientia 51(9–10):914–926PubMedCrossRefGoogle Scholar
  12. 12.
    Prosper F, Verfaillie CM (2001) Regulation of hematopoiesis through adhesion receptors. J Leukoc Biol 69(3):307–316PubMedGoogle Scholar
  13. 13.
    Wang LD, Wagers AJ (2011) Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 12(10):643–655PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Choi JS, Harley BA (2012) The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 33(18):4460–4468PubMedCrossRefGoogle Scholar
  15. 15.
    Holst J, Watson S, Lord MS et al (2010) Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotechnol 28(10):1123–1128PubMedCrossRefGoogle Scholar
  16. 16.
    Raic A, Rödling L, Kalbacher H et al (2014) Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials 35(3):929–940PubMedCrossRefGoogle Scholar
  17. 17.
    Lee-Thedieck C, Rauch N, Fiammengo R et al (2012) Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. J Cell Sci 125(16):3765–3775PubMedCrossRefGoogle Scholar
  18. 18.
    Lee J, Kotov NA (2009) Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. Small 5(9):1008–1013PubMedCrossRefGoogle Scholar
  19. 19.
    Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14(1):61–86PubMedCrossRefGoogle Scholar
  20. 20.
    Leisten I, Kramann R, Ventura Ferreira MS et al (2012) 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials 33(6):1736–1747PubMedCrossRefGoogle Scholar
  21. 21.
    Ventura Ferreira MS, Jahnen-Dechent W, Labude N et al (2012) Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33(29):6987–6997CrossRefGoogle Scholar
  22. 22.
    Feng Q, Chai C, Jiang XS et al (2006) Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. J Biomed Mater Res A 78(4):781–791PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Kurth I, Franke K, Pompe T et al (2011) Extracellular matrix functionalized microcavities to control hematopoietic stem and progenitor cell fate. Macromol Biosci 11(6):739–747PubMedCrossRefGoogle Scholar
  24. 24.
    Lutolf MP, Doyonnas R, Havenstrite K et al (2009) Perturbation of single hematopoietic stem cell fates in artificial niches. Integr Biol (Camb) 1(1):59–69CrossRefGoogle Scholar
  25. 25.
    Di Maggio N, Piccinini E, Jaworski M et al (2011) Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials 32(2):321–329PubMedCrossRefGoogle Scholar
  26. 26.
    Mortera-Blanco T, Mantalaris A, Bismarck A et al (2011) Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials 32(35):9263–9270PubMedCrossRefGoogle Scholar
  27. 27.
    Aydin D, Louban I, Perschmann N et al (2010) Polymeric substrates with tunable elasticity and nanoscopically controlled biomolecule presentation. Langmuir 26(19):15472–15480PubMedCrossRefGoogle Scholar
  28. 28.
    Chiu YC, Larson JC, Isom A Jr et al (2010) Generation of porous poly(ethylene glycol) hydrogels by salt leaching. Tissue Eng Part C Methods 16(5):905–912PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lisa Rödling
    • 1
  • Annamarija Raic
    • 2
  • Cornelia Lee-Thedieck
    • 1
    Email author
  1. 1.Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.RWTH Aachen UniversityAachenGermany

Personalised recommendations