Advertisement

Preparation of Primary Cultures of Mouse Epidermal Keratinocytes and the Measurement of Phospholipase D Activity

  • Lakiea J. Bailey
  • Vivek Choudhary
  • Purnima Merai
  • Wendy B. BollagEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1195)

Abstract

In this chapter information is provided about the outer layer of the skin, the epidermis, and the predominant cells comprising this epithelium, the keratinocytes. The evidence supporting a possible role for the lipid-metabolizing enzyme phospholipase D in regulating keratinocyte differentiation is also discussed. A detailed protocol for the preparation of primary cultures of epidermal keratinocytes from neonatal mice is described, to allow other investigators to obtain data concerning these important cells involved in forming and maintaining the mechanical and water permeability of the skin. Finally, a complete protocol for monitoring phospholipase D activity in intact cells is supplied in the hope that additional research will result in a better understanding of the role of phospholipase D in controlling keratinocyte proliferation and differentiation.

Keywords

Epidermis Keratinocytes Mouse Phosphatidic acid Phosphatidylalcohol Phospholipase D Skin 

Notes

Acknowledgements

W.B.B. is supported by VA Merit Award #CX000590 and a VA Research Career Scientist Award. The contents of this article do not represent the views of the Department of Veterans Affairs or the United States Government.

References

  1. 1.
    Amirlak B, Shahabi L, Javaheri S, Talavera F, Stadelmann WK et al (2011) Skin anatomy. In: Caputy G (ed). www.emedicinemedscapecom/article/1294744-overview
  2. 2.
    Goldsmith L (1991) Physiology, biochemistry and molecular biology of the skin. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Bikle DD, Pillai S (1993) Vitamin D, calcium, and epidermal differentiation. Endocr Rev 14:3–19PubMedGoogle Scholar
  4. 4.
    Yuspa S (1998) The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis. J Dermatol Sci 17:1–7PubMedCrossRefGoogle Scholar
  5. 5.
    American Academy of Dermatology (2011) Dermatology A to Z: stats and facts. American Academy of Dermatology, San Diego, CA. http://www.aad.org/dermatology-a-to-z
  6. 6.
    National Psoriasis Foundation (2011) What is known about psoriasis: statistics. http://www.psoriasis.org/research/science-of-psoriasis/statistics
  7. 7.
    Bollag WB, Ducote J, Harmon CS (1993) Effects of the selective protein kinase C inhibitor, Ro 31-7549, on the proliferation of cultured mouse epidermal keratinocytes. J Invest Dermatol 100:240–246PubMedCrossRefGoogle Scholar
  8. 8.
    Weissman BE, Aaronson SA (1983) BALB and Kirsten murine sarcoma viruses alter growth and differentiation of EGF-dependent BALB/c mouse epidermal keratinocyte lines. Cell 32:599–606PubMedCrossRefGoogle Scholar
  9. 9.
    Brysk MM, Miller J, Walker GK (1984) Characteristics of a human epidermal squamous carcinoma cell line at different extracellular calcium concentrations. Exp Cell Res 150:329–337PubMedCrossRefGoogle Scholar
  10. 10.
    Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A et al (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771PubMedCrossRefGoogle Scholar
  11. 11.
    Bollag WB, Ducote J, Harmon CS (1995) Biphasic effect of 1,25-dihydroxyvitamin D3 on primary mouse epidermal keratinocyte proliferation. J Cell Physiol 163:248–256PubMedCrossRefGoogle Scholar
  12. 12.
    McLane JA, Katz M, Abdelkader N (1990) Effect of 1,25-dihydroxyvitamin D3 on human keratinocytes grown under different culture conditions. In Vitro Cell Dev Biol 26:379–387PubMedCrossRefGoogle Scholar
  13. 13.
    Bikle DD, Gee E, Pillai S (1993) Regulation of keratinocyte growth, differentiation, and vitamin D metabolism by analogs of 1,25-dihydroxyvitamin D. J Invest Dermatol 101:713–718PubMedCrossRefGoogle Scholar
  14. 14.
    Strickland JE, Dlugosz AA, Hennings H, Yuspa SH (1993) Inhibition of tumor formation from grafted papilloma cells by treatment of grafts with staurosporine, an inducer of squamous differentiation. Carcinogenesis 14:205–209PubMedCrossRefGoogle Scholar
  15. 15.
    Inohara S, Tateishi H, Takeda Y, Tanaka Y, Sagami S (1988) Effects of protein kinase C activators on mouse skin in vivo. Arch Dermatol Res 280:182–184PubMedCrossRefGoogle Scholar
  16. 16.
    Wojcik SM, Bundman DS, Roop DR (2000) Delayed wound healing in keratin 6a knockout mice. Mol Cell Biol 20:5248–5255PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Mehling A, Loser K, Varga G, Metze D, Luger TA et al (2001) Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity. J Exp Med 194:615–628PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hanakawa Y, Matsuyoshi N, Stanley JR (2002) Expression of desmoglein 1 compensates for genetic loss of desmoglein 3 in keratinocyte adhesion. J Invest Dermatol 119:27–31PubMedCrossRefGoogle Scholar
  19. 19.
    Sougrat R, Morand M, Gondran C, Barre P, Gobin R et al (2002) Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. J Invest Dermatol 118:678–685PubMedCrossRefGoogle Scholar
  20. 20.
    Gherzi R, Sparatore B, Patrone M, Sciutto A, Briata P (1992) Protein kinase C mRNA levels and activity in reconstituted normal human epidermis: relationships to cell differentiation. Biochem Biophys Res Commun 184:283–291PubMedCrossRefGoogle Scholar
  21. 21.
    Bollag WB, Bollag RJ (2001) 1,25-Dihydroxyvitamin D3, phospholipase D and protein kinase C in keratinocyte differentiation. Mol Cell Endocrinol 177:173–182PubMedCrossRefGoogle Scholar
  22. 22.
    Bollag WB, Zheng X (2005) The role of phospholipase D and keratinocyte biology. In: Robinson JW (ed) Trends in protein research. Nova Science Publishers, Inc., New York, pp 79–118Google Scholar
  23. 23.
    Brindley DN, Pilquil C (2009) Lipid phosphate phosphatases and signaling. J Lipid Res 50:S225–S230PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Waggoner DW, Xu J, Singh I, Jasinska R, Zhang Q-X et al (1999) Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction. Biochim Biophys Acta 1439:299–316PubMedCrossRefGoogle Scholar
  25. 25.
    Bollag WB (2009) Protein kinase Calpha puts the hand cuffs on epidermal keratinocyte proliferation. J Invest Dermatol 129:2330–2332PubMedCrossRefGoogle Scholar
  26. 26.
    Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496PubMedGoogle Scholar
  27. 27.
    Zheng X, Ray S, Bollag W (2003) Modulation of phospholipase D-mediated phosphatidylglycerol formation by differentiating agents in primary mouse epidermal keratinocytes. Biochim Biophys Acta 1643:25–36PubMedCrossRefGoogle Scholar
  28. 28.
    Qin H, Zheng X, Zhong X, Shetty AK, Elias PM et al (2011) Aquaporin-3 in keratinocytes and skin: Its role and interaction with phospholipase D2. Arch Biochem Biophys 508:138–143PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Gomez-Cambronero J (2011) The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 23:1885–1895Google Scholar
  30. 30.
    Vitale N, Caumont AS, Chasserot-Gola S, Du G, Wu S, Sciorra VA et al (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20:2424–2434PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Colley W, Sung TC, Roll R, Jenco J, Hammond SM et al (1997) Phospholipase D2, a PLD1-related isoform with novel regulatory properties and discrete subcellular localization that provokes cytoskeletal reorganization. Curr Opin Cell Biol 7:191–201Google Scholar
  32. 32.
    Freyberg Z, Sweeney D, Siddhanta A, Bourgoin S, Frohman M et al (2001) Intracellular localization of phospholipase D1 in mammalian cells. Mol Biol Cell 12:943–955PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Su W, Chen Q, Frohman MA (2009) Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol 5:1477–1486PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Peng X, Frohman MA (2012) Mammalian phospholipase D physiological and pathological roles. Acta Physiol (Oxf) 204:219–226CrossRefGoogle Scholar
  35. 35.
    Lopez I, Arnold RS, Lambeth JD (1998) Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. J Biol Chem 273:12846–12852PubMedCrossRefGoogle Scholar
  36. 36.
    Rizzo MA, Shome K, Vasudevan C, Stolz DB, Sung T-C et al (1999) Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent Raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J Biol Chem 274:1131–1139PubMedCrossRefGoogle Scholar
  37. 37.
    Siddiqi AR, Srajer GE, Leslie CC (2000) Regulation of human PLD1 and PLD2 by calcium and protein kinase C. Biochim Biophys Acta 1497:103–114PubMedCrossRefGoogle Scholar
  38. 38.
    Han JM, Kim JH, Lee BD, Lee SD, Kim Y et al (2002) Phosphorylation-dependent regulation of phospholipase D2 by protein kinase C delta in rat pheochromocytoma PC12. J Biol Chem 277:8290–8297PubMedCrossRefGoogle Scholar
  39. 39.
    Park S-K, Provost JJ, Bae CD, Ho W-T, Exton JH (1997) Cloning and characterization of phospholipase D from rat brain. J Biol Chem 272:29263–29271PubMedCrossRefGoogle Scholar
  40. 40.
    Gomez-Cambronero J (2011) The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 23:1885–1895PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Frohman MA, Morris AJ (1996) Phospholipid signalling: Rho is only ARF the story. Curr Biol 6:945–947PubMedCrossRefGoogle Scholar
  42. 42.
    Griner RD, Qin F, Jung E, Sue-Ling CK, Crawford KB et al (1999) 1,25-dihydroxyvitamin D3 induces phospholipase D-1 expression in primary mouse epidermal keratinocytes. J Biol Chem 274:4663–4670PubMedCrossRefGoogle Scholar
  43. 43.
    Muller-Wieprecht V, Riebeling C, Alexander C, Scholz F-R, Hoer A et al (1998) Expression and regulation of phospholipase D in the human keratinocyte cell line HaCaT. FEBS Lett 425:199–203PubMedCrossRefGoogle Scholar
  44. 44.
    Jung E, Betancourt-Calle S, Mann-Blakeney R, Griner RD, Bollag W (1999) Sustained phospholipase D activation is associated with keratinocyte differentiation. Carcinogenesis 20:569–576PubMedCrossRefGoogle Scholar
  45. 45.
    Kikuchi R, Sobue S, Murakami M, Ito H, Kimura A et al (2007) Mechanism of vitamin D3-induced transcription of phospholipase D1 in HaCat human keratinocytes. FEBS Lett 581:1800–1804PubMedCrossRefGoogle Scholar
  46. 46.
    Bollag WB, Xie D, Zheng X, Zhong X (2007) A potential role for the phospholipase D2-Aquaporin-3 signaling module in early keratinocyte differentiation: Production of a phosphatidylglycerol signaling lipid. J Invest Dermatol 127:2823–2831PubMedGoogle Scholar
  47. 47.
    Janus C, Golde T (2014) The effect of brief neonatal cryoanesthesia on physical development and adult cognitive function in mice. Behav Brain Res 259:253–260PubMedCrossRefGoogle Scholar
  48. 48.
    Bollag WB (1998) Measurement of phospholipase D activity. Methods Mol Biol 105:151–160PubMedGoogle Scholar
  49. 49.
    Zheng X, Bollag WB (2003) Aquaporin 3 colocates with phospholipase D2 in caveolin-rich membrane microdomains and is regulated by keratinocyte differentiation. J Invest Dermatol 121:1487–1495PubMedCrossRefGoogle Scholar
  50. 50.
    Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem 47:1275–1286PubMedCrossRefGoogle Scholar
  51. 51.
    Zhu N, Feng X, He C, Gao H, Yang L et al (2011) Defective macrophage function in aquaporin-3 deficiency. FASEB J 25:4233–4239PubMedCrossRefGoogle Scholar
  52. 52.
    Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36:1–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lakiea J. Bailey
    • 1
  • Vivek Choudhary
    • 1
    • 2
  • Purnima Merai
    • 1
    • 2
  • Wendy B. Bollag
    • 1
    • 2
    Email author
  1. 1.Department of PhysiologyGeorgia Regents UniversityAugustaUSA
  2. 2.Charlie Norwood VA Medical CenterAugustaUSA

Personalised recommendations