Restriction–Modification Systems as a Barrier for Genetic Manipulation of Staphylococcus aureus

  • Marat R. SadykovEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1373)


Genetic manipulation is a powerful approach to study fundamental aspects of bacterial physiology, metabolism, and pathogenesis. Most Staphylococcus aureus strains are remarkably difficult to genetically manipulate as they possess strong host defense mechanisms that protect bacteria from cellular invasion by foreign DNA. In S. aureus these bacterial “immunity” mechanisms against invading genomes are mainly associated with restriction–modification systems. To date, prokaryotic restriction–modification systems are classified into four different types (Type I–IV), all of which have been found in the sequenced S. aureus genomes. This chapter describes the roles, classification, mechanisms of action of different types of restriction–modification systems and the recent advances in the biology of restriction and modification in S. aureus.


Staphylococcus aureus RM systems REase MTase REBASE Genetic manipulation 


  1. 1.
    Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532CrossRefPubMedGoogle Scholar
  2. 2.
    Tock MR, Dryden DT (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8:466–472CrossRefPubMedGoogle Scholar
  3. 3.
    Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627CrossRefPubMedGoogle Scholar
  4. 4.
    Pingoud A, Jeltsch A (2001) Structure and function of type II restriction endonucleases. Nucleic Acids Res 29:3705–3727PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Murray NE (2002) 2001 Fred Griffith review lecture. Immigration control of DNA in bacteria: self versus non-self. Microbiology 148:3–20CrossRefPubMedGoogle Scholar
  6. 6.
    Vasu K, Nagaraja V (2013) Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 77:53–72PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Naito T, Kusano K, Kobayashi I (1995) Selfish behavior of restriction-modification systems. Science 267:897–899CrossRefPubMedGoogle Scholar
  8. 8.
    Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Ishikawa K, Fukuda E, Kobayashi I (2010) Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 17:325–342PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240CrossRefPubMedGoogle Scholar
  11. 11.
    Takahashi N, Ohashi S, Sadykov MR, Mizutani-Ui Y, Kobayashi I (2011) IS-linked movement of a restriction-modification system. PLoS One 6:e16554PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Makarova KS, Wolf YI, Snir S, Koonin EV (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 193:6039–6056PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Mruk I, Kobayashi I (2014) To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 42:70–86PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Price C, Bickle TA (1986) A possible role for DNA restriction in bacterial evolution. Microbiol Sci 3:296–299PubMedGoogle Scholar
  15. 15.
    Kusano K, Sakagami K, Yokochi T, Naito T, Tokinaga Y, Ueda E, Kobayashi I (1997) A new type of illegitimate recombination is dependent on restriction and homologous interaction. J Bacteriol 179:5380–5390PubMedCentralPubMedGoogle Scholar
  16. 16.
    Chinen A, Uchiyama I, Kobayashi I (2000) Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction-modification genes with large genome polymorphisms. Gene 259:109–121CrossRefPubMedGoogle Scholar
  17. 17.
    Handa N, Nakayama Y, Sadykov M, Kobayashi I (2001) Experimental genome evolution: large-scale genome rearrangements associated with resistance to replacement of a chromosomal restriction-modification gene complex. Mol Microbiol 40:932–940CrossRefPubMedGoogle Scholar
  18. 18.
    Sadykov M, Asami Y, Niki H, Handa N, Itaya M, Tanokura M, Kobayashi I (2003) Multiplication of a restriction-modification gene complex. Mol Microbiol 48:417–427CrossRefPubMedGoogle Scholar
  19. 19.
    Tsuru T, Kawai M, Mizutani-Ui Y, Uchiyama I, Kobayashi I (2006) Evolution of paralogous genes: reconstruction of genome rearrangements through comparison of multiple genomes within Staphylococcus aureus. Mol Biol Evol 23:1269–1285CrossRefPubMedGoogle Scholar
  20. 20.
    Arber W (2000) Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7CrossRefPubMedGoogle Scholar
  21. 21.
    Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532CrossRefPubMedGoogle Scholar
  22. 22.
    Roberts GA, Houston PJ, White JH, Chen K, Stephanou AS, Cooper LP, Dryden DT, Lindsay JA (2013) Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations. Nucleic Acids Res 41:7472–7484PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Darmon E, Leach DR (2014) Bacterial genome instability. Microbiol Mol Biol Rev 78:1–39PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev S, Dryden DT, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Kruger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JM, Wilson GG, Xu SY (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Murray NE (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64:412–434PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Dryden DT, Murray NE, Rao DN (2001) Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res 29:3728–3741PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Eskin B, Linn S (1972) The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. II. Purification, subunit structure, and catalytic properties of the restriction endonuclease. J Biol Chem 247:6183–6191PubMedGoogle Scholar
  28. 28.
    Lautenberger JA, Linn S (1972) The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. I. Purification, subunit structure, and catalytic properties of the modification methylase. J Biol Chem 247:6176–6182PubMedGoogle Scholar
  29. 29.
    Dryden DT, Cooper LP, Thorpe PH, Byron O (1997) The in vitro assembly of the EcoKI type I DNA restriction/modification enzyme and its in vivo implications. Biochemistry 36:1065–1076CrossRefPubMedGoogle Scholar
  30. 30.
    Loenen WA, Dryden DT, Raleigh EA, Wilson GG (2014) Type I restriction enzymes and their relatives. Nucleic Acids Res 42:20–44PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Vovis GF, Horiuchi K, Zinder ND (1974) Kinetics of methylation of DNA by a restriction endonuclease from Escherichia coli B. Proc Natl Acad Sci U S A 71:3810–3813PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Kan NC, Lautenberger JA, Edgell MH, Hutchison CA III (1979) The nucleotide sequence recognized by the Escherichia coli K12 restriction and modification enzymes. J Mol Biol 130:191–209CrossRefPubMedGoogle Scholar
  33. 33.
    Powell LM, Dryden DT, Willcock DF, Pain RH, Murray NE (1993) DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine. J Mol Biol 234:60–71CrossRefPubMedGoogle Scholar
  34. 34.
    Janscak P, MacWilliams MP, Sandmeier U, Nagaraja V, Bickle TA (1999) DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes. EMBO J 18:2638–2647PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Firman K, Szczelkun MD (2000) Measuring motion on DNA by the type I restriction endonuclease EcoR124I using triplex displacement. EMBO J 19:2094–2102PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Seidel R, van Noort J, van der Scheer C, Bloom JG, Dekker NH, Dutta CF, Blundell A, Robinson T, Firman K, Dekker C (2004) Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nat Struct Mol Biol 11:838–843CrossRefPubMedGoogle Scholar
  37. 37.
    Horiuchi K, Zinder ND (1972) Cleavage of bacteriophage fl DNA by the restriction enzyme of Escherichia coli B. Proc Natl Acad Sci U S A 69:3220–3224PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Hadi SM, Bickle TA, Yuan R (1975) The role of S-adenosylmethionine in the cleavage of deoxyribonucleic acid by the restriction endonuclease from Escherichia coli K. J Biol Chem 250:4159–4164PubMedGoogle Scholar
  39. 39.
    Studier FW, Bandyopadhyay PK (1988) Model for how type I restriction enzymes select cleavage sites in DNA. Proc Natl Acad Sci U S A 85:4677–4681PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Janscak P, Abadjieva A, Firman K (1996) The type I restriction endonuclease R.EcoR124I: over-production and biochemical properties. J Mol Biol 257:977–991CrossRefPubMedGoogle Scholar
  41. 41.
    Sistla S, Rao DN (2004) S-Adenosyl-L-methionine-dependent restriction enzymes. Crit Rev Biochem Mol Biol 39:1–19CrossRefPubMedGoogle Scholar
  42. 42.
    Bianco PR, Xu C, Chi M (2009) Type I restriction endonucleases are true catalytic enzymes. Nucleic Acids Res 37:3377–3390PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Chin V, Valinluck V, Magaki S, Ryu J (2004) KpnBI is the prototype of a new family (IE) of bacterial type I restriction-modification system. Nucleic Acids Res 32:e138PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE (2014) Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 42:3–19PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–D236PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Janscak P, Sandmeier U, Szczelkun MD, Bickle TA (2001) Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I. J Mol Biol 306:417–431CrossRefPubMedGoogle Scholar
  47. 47.
    Rao DN, Dryden DT, Bheemanaik S (2014) Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res 42:45–55PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Piekarowicz A, Brzezinski R (1980) Cleavage and methylation of DNA by the restriction endonuclease HinfIII isolated from Haemophilus influenzae Rf. J Mol Biol 144:415–429CrossRefPubMedGoogle Scholar
  49. 49.
    Meisel A, Bickle TA, Kruger DH, Schroeder C (1992) Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature 355:467–469CrossRefPubMedGoogle Scholar
  50. 50.
    Meisel A, Mackeldanz P, Bickle TA, Kruger DH, Schroeder C (1995) Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis. EMBO J 14:2958–2966PubMedCentralPubMedGoogle Scholar
  51. 51.
    Reich S, Gossl I, Reuter M, Rabe JP, Kruger DH (2004) Scanning force microscopy of DNA translocation by the Type III restriction enzyme EcoP15I. J Mol Biol 341:337–343CrossRefPubMedGoogle Scholar
  52. 52.
    Dryden DT, Edwardson JM, Henderson RM (2011) DNA translocation by type III restriction enzymes: a comparison of current models of their operation derived from ensemble and single-molecule measurements. Nucleic Acids Res 39:4525–4531PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Szczelkun MD (2011) Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases. Biochem Soc Trans 39:589–594PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Schwarz FW, Toth J, van Aelst K, Cui G, Clausing S, Szczelkun MD, Seidel R (2013) The helicase-like domains of type III restriction enzymes trigger long-range diffusion along DNA. Science 340:353–356PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Loenen WA, Raleigh EA (2014) The other face of restriction: modification-dependent enzymes. Nucleic Acids Res 42:56–69PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Raleigh EA, Wilson G (1986) Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci U S A 83:9070–9074PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Stewart FJ, Panne D, Bickle TA, Raleigh EA (2000) Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J Mol Biol 298:611–622CrossRefPubMedGoogle Scholar
  58. 58.
    Pieper U, Groll DH, Wunsch S, Gast FU, Speck C, Mucke N, Pingoud A (2002) The GTP-dependent restriction enzyme McrBC from Escherichia coli forms high-molecular mass complexes with DNA and produces a cleavage pattern with a characteristic 10-base pair repeat. Biochemistry 41:5245–5254CrossRefPubMedGoogle Scholar
  59. 59.
    Pieper U, Brinkmann T, Kruger T, Noyer-Weidner M, Pingoud A (1997) Characterization of the interaction between the restriction endonuclease McrBC from E. coli and its cofactor GTP. J Mol Biol 272:190–199CrossRefPubMedGoogle Scholar
  60. 60.
    Gast FU, Brinkmann T, Pieper U, Kruger T, Noyer-Weidner M, Pingoud A (1997) The recognition of methylated DNA by the GTP-dependent restriction endonuclease McrBC resides in the N-terminal domain of McrB. Biol Chem 378:975–982CrossRefPubMedGoogle Scholar
  61. 61.
    Kruger T, Wild C, Noyer-Weidner M (1995) McrB: a prokaryotic protein specifically recognizing DNA containing modified cytosine residues. EMBO J 14:2661–2669PubMedCentralPubMedGoogle Scholar
  62. 62.
    Sutherland E, Coe L, Raleigh EA (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol 225:327–348CrossRefPubMedGoogle Scholar
  63. 63.
    Panne D, Raleigh EA, Bickle TA (1999) The McrBC endonuclease translocates DNA in a reaction dependent on GTP hydrolysis. J Mol Biol 290:49–60CrossRefPubMedGoogle Scholar
  64. 64.
    Stewart FJ, Raleigh EA (1998) Dependence of McrBC cleavage on distance between recognition elements. Biol Chem 379:611–616PubMedGoogle Scholar
  65. 65.
    Ishikawa K, Handa N, Sears L, Raleigh EA, Kobayashi I (2011) Cleavage of a model DNA replication fork by a methyl-specific endonuclease. Nucleic Acids Res 39:5489–5498PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Lippman Z, Gendrel AV, Colot V, Martienssen R (2005) Profiling DNA methylation patterns using genomic tiling microarrays. Nat Methods 2:219–224CrossRefPubMedGoogle Scholar
  67. 67.
    Cohen-Karni D, Xu D, Apone L, Fomenkov A, Sun Z, Davis PJ, Kinney SR, Yamada-Mabuchi M, Xu SY, Davis T, Pradhan S, Roberts RJ, Zheng Y (2011) The MspJI family of modification-dependent restriction endonucleases for epigenetic studies. Proc Natl Acad Sci U S A 108:11040–11045PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Sussenbach JS, Monfoort CH, Schiphof R, Stobberingh EE (1976) A restriction endonuclease from Staphylococcus aureus. Nucleic Acids Res 3:3193–3202PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Sussenbach JS, Steenbergh PH, Rost JA, van Leeuwen WJ, van Embden JD (1978) A second site-specific restriction endonuclease from Staphylococcus aureus. Nucleic Acids Res 5:1153–1163PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Sjostrom JE, Lofdahl S, Philipson L (1978) Biological characteristics of a type I restriction-modification system in Staphylococcus aureus. J Bacteriol 133:1144–1149PubMedCentralPubMedGoogle Scholar
  71. 71.
    Lebenka A, Rachkus Iu A (1989) DNA-methylase Sau 3A: isolation and various properties. Biokhimiia 54:1009–1014PubMedGoogle Scholar
  72. 72.
    Szilak L, Venetianer P, Kiss A (1990) Cloning and nucleotide sequence of the genes coding for the Sau96I restriction and modification enzymes. Nucleic Acids Res 18:4659–4664PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Friedhoff P, Lurz R, Luder G, Pingoud A (2001) Sau3AI, a monomeric type II restriction endonuclease that dimerizes on the DNA and thereby induces DNA loops. J Biol Chem 276:23581–23588CrossRefPubMedGoogle Scholar
  74. 74.
    Godany A, Bukovska G, Farkasovska J, Brnakova Z, Dmitriev A, Tkacikova E, Ayele T, Mikula I (2004) Characterization of a complex restriction-modification system detected in Staphylococcus aureus and Streptococcus agalactiae strains isolated from infections of domestic animals. Folia Microbiol (Praha) 49:307–314CrossRefGoogle Scholar
  75. 75.
    Dempsey RM, Carroll D, Kong H, Higgins L, Keane CT, Coleman DC (2005) Sau42I, a BcgI-like restriction-modification system encoded by the Staphylococcus aureus quadruple-converting phage Phi42. Microbiology 151:1301–1311CrossRefPubMedGoogle Scholar
  76. 76.
    Gemmen GJ, Millin R, Smith DE (2006) Dynamics of single DNA looping and cleavage by Sau3AI and effect of tension applied to the DNA. Biophys J 91:4154–4165PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Xu SY, Corvaglia AR, Chan SH, Zheng Y, Linder P (2011) A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res 39:5597–5610PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Malachowa N, DeLeo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057–3071PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Waldron DE, Lindsay JA (2006) Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol 188:5578–5585PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Lindsay JA (2014) Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol 304:103–109CrossRefPubMedGoogle Scholar
  81. 81.
    Prabhakara S, Khedkar S, Loganathan RM, Chandana S, Gowda M, Arakere G, Seshasayee AS (2012) Draft genome sequence of Staphylococcus aureus 118 (ST772), a major disease clone from India. J Bacteriol 194:3727–3728PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Tobes R, Manrique M, Brozynska M, Stephan R, Pareja E, Johler S (2013) Noncontiguous Finished Genome Sequence of Staphylococcus aureus KLT6, a Staphylococcal Enterotoxin B-Positive Strain Involved in a Food Poisoning Outbreak in Switzerland. Genome Announc 1:e00214-13PubMedCentralPubMedGoogle Scholar
  83. 83.
    Corvaglia AR, Francois P, Hernandez D, Perron K, Linder P, Schrenzel J (2010) A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad Sci U S A 107:11954–11958PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Wolk CP, Vonshak A, Kehoe P, Elhai J (1984) Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci U S A 81:1561–1565PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Novick RP (1991) Genetic systems in staphylococci. Methods Enzymol 204:587–636CrossRefPubMedGoogle Scholar
  86. 86.
    Donahue JP, Israel DA, Peek RM, Blaser MJ, Miller GG (2000) Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol Microbiol 37:1066–1074CrossRefPubMedGoogle Scholar
  87. 87.
    O'Connell Motherway M, O'Driscoll J, Fitzgerald GF, Van Sinderen D (2009) Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2:321–332PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Zhang G, Wang W, Deng A, Sun Z, Zhang Y, Liang Y, Che Y, Wen T (2012) A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS Genet 8:e1002987PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Stucken K, Koch R, Dagan T (2013) Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering. Biol Res 46:373–382CrossRefPubMedGoogle Scholar
  90. 90.
    Chung D, Farkas J, Westpheling J (2013) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 6:82PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Macaluso A, Mettus AM (1991) Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA. J Bacteriol 173:1353–1356PubMedCentralPubMedGoogle Scholar
  92. 92.
    Marrero R, Welkos SL (1995) The transformation frequency of plasmids into Bacillus anthracis is affected by adenine methylation. Gene 152:75–78CrossRefPubMedGoogle Scholar
  93. 93.
    Sitaraman R, Leppla SH (2012) Methylation-dependent DNA restriction in Bacillus anthracis. Gene 494:44–50PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Kreiswirth BN, Lofdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, Novick RP (1983) The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712CrossRefPubMedGoogle Scholar
  95. 95.
    Monk IR, Foster TJ (2012) Genetic manipulation of Staphylococci-breaking through the barrier. Front Cell Infect Microbiol 2:49PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Nair D, Memmi G, Hernandez D, Bard J, Beaume M, Gill S, Francois P, Cheung AL (2011) Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol 193:2332–2335PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Baek KT, Frees D, Renzoni A, Barras C, Rodriguez N, Manzano C, Kelley WL (2013) Genetic variation in the Staphylococcus aureus 8325 strain lineage revealed by whole-genome sequencing. PLoS One 8:e77122PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Veiga H, Pinho MG (2009) Inactivation of the SauI type I restriction-modification system is not sufficient to generate Staphylococcus aureus strains capable of efficiently accepting foreign DNA. Appl Environ Microbiol 75:3034–3038PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.
    Monk IR, Shah IM, Xu M, Tan MW, Foster TJ (2012) Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3:pii: e00277-11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pathology and Microbiology, Center for Staphylococcal ResearchUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations