Dual-SMAD Inhibition/WNT Activation-Based Methods to Induce Neural Crest and Derivatives from Human Pluripotent Stem Cells

  • Stuart M. Chambers
  • Yvonne Mica
  • Gabsang Lee
  • Lorenz Studer
  • Mark J. Tomishima
Part of the Methods in Molecular Biology book series (MIMB, volume 1307)


The neural crest (NC) is a transient population of multipotent cells giving rise to the peripheral nervous system, skin pigmentation, heart, and facial mesenchyme. The broad cell fate potential of NC makes it an attractive cell fate to derive from human pluripotent stem cells (hPSCs) for exploring embryonic development, modeling disease, and generating cells for transplantation. Here, we discuss recent publications and methods for efficiently differentiating hPSCs into NC. We also provide methods to direct NC into two different terminal fates: melanocytes and sensory neurons.


Human pluripotent stem cells Peripheral sensory neurons Melanocyte Neural crest Disease modeling Dual SMAD inhibition 



M.J.T. and L.S. are supported by The Starr Foundation and NYSTEM. Protocol development was supported in part by grants from NYSTEM (CO26446 and CO26447 to L.S, C026399 to S.M.C., C024175 to L.S. and M.J.T.), the Joanna M. Nicolay Melanoma Foundation (Y.M.), and in part through NS066390 from National Institute of Neurological Disorders and Stroke/US National Institutes of Health (NS066390 to L.S.). G.L. is supported by the Robertson Investigator Award of the New York Stem Cell Foundation and from the Maryland Stem Cell Research Fund (TEDCO).


  1. 1.
    Rp B (1974) The neurocristopathies: a unifying concept fo disease arising in neural crest development. Hum Pathol 5(4):409–429CrossRefGoogle Scholar
  2. 2.
    Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, Shi SH, Studer L (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30(7):715–720. doi: 10.1038/nbt.2249 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–1475. doi: 10.1038/nbt1365 PubMedCrossRefGoogle Scholar
  4. 4.
    Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406. doi: 10.1038/nature08320 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lee G, Ramirez CN, Kim H, Zeltner N, Liu B, Radu C, Bhinder B, Kim YJ, Choi IY, Mukherjee-Clavin B, Djaballah H, Studer L (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248. doi: 10.1038/nbt.2435 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Menendez L, Yatskievych TA, Antin PB, Dalton S (2011) Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci U S A 108(48):19240–19245. doi: 10.1073/pnas.1113746108 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Mica Y, Lee G, Chambers SM, Tomishima MJ, Studer L (2013) Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep 3(4):1140–1152. doi: 10.1016/j.celrep.2013.03.025 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Jiang X, Gwye Y, McKeown SJ, Bronner-Fraser M, Lutzko C, Lawlor ER (2009) Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem Cell Dev 18(7):1059–1070. doi: 10.1089/scd.2008.0362 CrossRefGoogle Scholar
  9. 9.
    Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1):31–40PubMedCrossRefGoogle Scholar
  10. 10.
    Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MA, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200–1207. doi: 10.1038/nbt870 PubMedCrossRefGoogle Scholar
  11. 11.
    Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Gene Dev 22(2):152–165. doi: 10.1101/gad.1616208 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133. doi: 10.1038/nbt1201-1129 PubMedCrossRefGoogle Scholar
  13. 13.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. doi: 10.1038/nbt.1529 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Sun L, Tran N, Liang C, Tang F, Rice A, Schreck R, Waltz K, Shawver LK, McMahon G, Tang C (1999) Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J Med Chem 42(25):5120–5130PubMedCrossRefGoogle Scholar
  15. 15.
    Dovey HF, John V, Anderson JP, Chen LZ, de Saint AP, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, Hu KL, Johnson-Wood KL, Kennedy SL, Kholodenko D, Knops JE, Latimer LH, Lee M, Liao Z, Lieberburg IM, Motter RN, Mutter LC, Nietz J, Quinn KP, Sacchi KL, Seubert PA, Shopp GM, Thorsett ED, Tung JS, Wu J, Yang S, Yin CT, Schenk DB, May PC, Altstiel LD, Bender MH, Boggs LN, Britton TC, Clemens JC, Czilli DL, Dieckman-McGinty DK, Droste JJ, Fuson KS, Gitter BD, Hyslop PA, Johnstone EM, Li WY, Little SP, Mabry TE, Miller FD, Audia JE (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76(1):173–181PubMedCrossRefGoogle Scholar
  16. 16.
    Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686. doi: 10.1038/nbt1310 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stuart M. Chambers
    • 1
  • Yvonne Mica
    • 1
    • 2
  • Gabsang Lee
    • 3
  • Lorenz Studer
    • 4
  • Mark J. Tomishima
    • 5
  1. 1.Developmental Biology Program, Center for Stem Cell BiologySloan-Kettering InstituteNew YorkUSA
  2. 2.Life TechnologiesCarlsbadUSA
  3. 3.Department of Neurology and NeuroscienceInstitute for Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Developmental Biology Program, Department of Neurosurgery, Center for Stem Cell BiologySloan-Kettering InstituteNew YorkUSA
  5. 5.Developmental Biology Program, SKI Stem Cell Research Facility, Center for Stem Cell BiologySloan-Kettering InstituteNew YorkUSA

Personalised recommendations