Screening of Nanoparticle Embryotoxicity Using Embryonic Stem Cells

  • Luisa Campagnolo
  • Ivana Fenoglio
  • Micol Massimiani
  • Andrea Magrini
  • Antonio Pietroiusti
Part of the Methods in Molecular Biology book series (MIMB, volume 1058)


Due to the increasing use of engineered nanoparticles in many consumer products, rapid and economic tests for evaluating possible adverse effects on human health are urgently needed. In the present chapter the use of mouse embryonic stem cells as a valuable tool to in vitro screen nanoparticle toxicity on embryonic tissues is described. This in vitro method is a modification of the embryonic stem cell test, which has been widely used to screen soluble chemical compounds for their embryotoxic potential. The test offers an alternative to animal experimentation, reducing experimental costs and ethical issues.


Nanoparticles ENP Engineered nanoparticles Nanomaterials Embryo In vitro test Mouse embryonic stem cells 

Supplementary material

Video 1.

Visualization of contracting EBs at the end of the differentiation experiments (AVI 15,590 kb)


  1. 1.
    Simkó M, Mattsson MO (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42–57PubMedCrossRefGoogle Scholar
  2. 2.
    Castranova V (2011) Overview of current toxicological knowledge of engineered nanoparticles. J Occup Environ Med 53(6 Suppl):S14–S17PubMedGoogle Scholar
  3. 3.
    Pietroiusti A (2012) Health implications of engineered nanomaterials. Nanoscale 4:1231–1247PubMedCrossRefGoogle Scholar
  4. 4.
    Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356PubMedCrossRefGoogle Scholar
  5. 5.
    Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43–54PubMedCrossRefGoogle Scholar
  6. 6.
    Seiler AE, Buesen R, Visan A, Spielmann H (2006) Use of murine embryonic stem cells in embryotoxicity assays: the embryonic stem cell test. Methods Mol Biol 329:371–395PubMedGoogle Scholar
  7. 7.
    Seiler AE, Spielmann H (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6:961–978PubMedCrossRefGoogle Scholar
  8. 8.
    Di Guglielmo C, López DR, De Lapuente J, Mallafre JM, Suàrez MB (2010) Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach. Reprod Toxicol 30:271–276PubMedCrossRefGoogle Scholar
  9. 9.
    Park MV, Annema W, Salvati A, Lesniak A, Elsaesser A, Barnes C, McKerr G, Howard CV, Lynch I, Dawson KA, Piersma AH, de Jong WH (2009) In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240:108–116PubMedCrossRefGoogle Scholar
  10. 10.
    Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, Camaioni A, Magrini A, Siracusa G, Bergamaschi A, Sgambato A, Campagnolo L (2011) Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 5:4624–4633PubMedCrossRefGoogle Scholar
  11. 11.
    Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312PubMedCrossRefGoogle Scholar
  12. 12.
    Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253PubMedCrossRefGoogle Scholar
  13. 13.
    Fenoglio I, Fubini B, Ghibaudi E, Turci F (2011) Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev 63:1186–1209PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luisa Campagnolo
    • 1
  • Ivana Fenoglio
    • 2
  • Micol Massimiani
    • 3
  • Andrea Magrini
    • 3
  • Antonio Pietroiusti
    • 3
  1. 1.Biomechanics and Technology InnovationRizzoli Orthopaedic InstituteBolognaItaly
  2. 2.IRCCS Casa Sollievo della Sofferenza Opera di San Pio da PietrelcinaSan Giovanni RotondoItaly
  3. 3.Center for Nanomedicine and Tissue Engineering, CNTEA.O. Ospedale Niguarda Ca’ GrandaMilanItaly

Personalised recommendations